科目: 來源: 題型:
【題目】已知點(diǎn)、
分別是橢圓
的上、下頂點(diǎn),以
為直徑作圓
,直線
與橢圓
交于
、
兩點(diǎn),與圓
交于
、
兩點(diǎn).
(1)若直線的傾斜角為
,求
(
為坐標(biāo)原點(diǎn))的面積;
(2)若點(diǎn)、
分別在直線
、
上,且
,求直線
的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,轎車已成為人們上班代步的一種重要工具.現(xiàn)將某人三年以來每周開車從家到公司的時(shí)間之和統(tǒng)計(jì)如圖所示.
(1)求此人這三年以來每周開車從家到公司的時(shí)間之和在(時(shí))內(nèi)的頻率;
(2)求此人這三年以來每周開車從家到公司的時(shí)間之和的平均數(shù)(每組取該組的中間值作代表);
(3)以頻率估計(jì)概率,記此人在接下來的四周內(nèi)每周開車從家到公司的時(shí)間之和在(時(shí))內(nèi)的周數(shù)為
,求
的分布列以及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的
相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用
的主要用途,隨機(jī)抽取了
名大學(xué)生進(jìn)行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計(jì)如圖所示,現(xiàn)有如下說法:
①可以估計(jì)使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);
②可以估計(jì)不足的大學(xué)生使用
主要玩游戲;
③可以估計(jì)使用主要找人聊天的大學(xué)生超過總數(shù)的
.
其中正確的個(gè)數(shù)為( )
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)
在拋物線
:
上,直線
:
與拋物線
交于
,
兩點(diǎn),且直線
,
的斜率之和為-1.
(1)求和
的值;
(2)若,設(shè)直線
與
軸交于
點(diǎn),延長
與拋物線
交于點(diǎn)
,拋物線
在點(diǎn)
處的切線為
,記直線
,
與
軸圍成的三角形面積為
,求
的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),其中
.
(1)當(dāng)時(shí),求
的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)在區(qū)間
上有且只有
個(gè)極值點(diǎn)時(shí),求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
,
,且
,
,
分別為棱
,
,
的中點(diǎn).
(1)證明:直線與
共面;并求其所成角的余弦值;
(2)在棱上是否存在點(diǎn)
,使得
平面
,若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
,
,且
,
,
,
分別為棱
,
,
,
的中點(diǎn).
(I)證明:直線與
共面;
(Ⅱ)證明:平面平面
;并試寫出
到平面
的距離(不必寫出計(jì)算過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com