科目: 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,
//
,
.
(1)證明://平面BCE.
(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校為了解該校高三年級學(xué)生數(shù)學(xué)科學(xué)習(xí)情況,對一模考試數(shù)學(xué)成績進行分析,從中抽取了名學(xué)生的成績作為樣本進行統(tǒng)計,該校全體學(xué)生的成績均在
,按照
,
,
,
,
,
,
,
的分組作出頻率分布直方圖如圖(1)所示,樣本中分數(shù)在
內(nèi)的所有數(shù)據(jù)的莖葉圖如圖(2)所示.根據(jù)上級統(tǒng)計劃出預(yù)錄分數(shù)線,有下列分數(shù)與可能被錄取院校層次對照表為表(3).
分數(shù) | |||
可能被錄取院校層次 | ? | 本科 | 重本 |
圖(3)
(1)求和頻率分布直方圖中的
,
的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學(xué)生中任取3人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和?苾蓚層次的學(xué)生中隨機抽取3名學(xué)生進行調(diào)研,用表示所抽取的3名學(xué)生中為重本的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
與曲線
,(
為參數(shù)).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系.
(1)寫出曲線,
的極坐標方程;
(2)在極坐標系中,已知與
,
的公共點分別為
,
,
,當
時,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(
為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,
,試求函數(shù)
極小值的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)橢圓(
)的離心率為
,圓
與
軸正半軸交于點
,圓
在點
處的切線被橢圓
截得的弦長為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)圓上任意一點
處的切線交橢圓
于點
,試判斷
是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com