日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2009年高考數(shù)學(xué)難點(diǎn)突破專(zhuān)題輔導(dǎo)十三

          難點(diǎn)13  數(shù)列的通項(xiàng)與求和

          數(shù)列是函數(shù)概念的繼續(xù)和延伸,數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式都可以看作項(xiàng)數(shù)n的函數(shù),是函數(shù)思想在數(shù)列中的應(yīng)用.數(shù)列以通項(xiàng)為綱,數(shù)列的問(wèn)題,最終歸結(jié)為對(duì)數(shù)列通項(xiàng)的研究,而數(shù)列的前n項(xiàng)和Sn可視為數(shù)列{Sn}的通項(xiàng)。通項(xiàng)及求和是數(shù)列中最基本也是最重要的問(wèn)題之一,與數(shù)列極限及數(shù)學(xué)歸納法有著密切的聯(lián)系,是高考對(duì)數(shù)列問(wèn)題考查中的熱點(diǎn),本點(diǎn)的動(dòng)態(tài)函數(shù)觀(guān)點(diǎn)解決有關(guān)問(wèn)題,為其提供行之有效的方法.

          ●難點(diǎn)磁場(chǎng)

          (★★★★★)設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,并且對(duì)于所有的自然數(shù)n,an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng).

          (1)寫(xiě)出數(shù)列{an}的前3項(xiàng).

          (2)求數(shù)列{an}的通項(xiàng)公式(寫(xiě)出推證過(guò)程)

          (3)令bn=6ec8aac122bd4f6e(nN*),求6ec8aac122bd4f6e (b1+b2+b3+…+bnn).

          ●案例探究

          [例1]已知數(shù)列{an}是公差為d的等差數(shù)列,數(shù)列{bn}是公比為q的(qRq≠1)的等比數(shù)列,若函數(shù)f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),

          (1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

          (2)設(shè)數(shù)列{cn}的前n項(xiàng)和為Sn,對(duì)一切nN*,都有6ec8aac122bd4f6e=an+1成立,求6ec8aac122bd4f6e6ec8aac122bd4f6e.

          命題意圖:本題主要考查等差、等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式、數(shù)列的極限,以及運(yùn)算能力和綜合分析問(wèn)題的能力.屬★★★★★級(jí)題目.

          知識(shí)依托:本題利用函數(shù)思想把題設(shè)條件轉(zhuǎn)化為方程問(wèn)題非常明顯,而(2)中條件等式的左邊可視為某數(shù)列前n項(xiàng)和,實(shí)質(zhì)上是該數(shù)列前n項(xiàng)和與數(shù)列{an}的關(guān)系,借助通項(xiàng)與前n項(xiàng)和的關(guān)系求解cn是該條件轉(zhuǎn)化的突破口.

          錯(cuò)解分析:本題兩問(wèn)環(huán)環(huán)相扣,(1)問(wèn)是基礎(chǔ),但解方程求基本量a1、b1、dq,計(jì)算不準(zhǔn)易出錯(cuò);(2)問(wèn)中對(duì)條件的正確認(rèn)識(shí)和轉(zhuǎn)化是關(guān)鍵.

          技巧與方法:本題(1)問(wèn)運(yùn)用函數(shù)思想轉(zhuǎn)化為方程問(wèn)題,思路較為自然,(2)問(wèn)“借雞生蛋”構(gòu)造新數(shù)列{dn},運(yùn)用和與通項(xiàng)的關(guān)系求出dn,絲絲入扣.

          解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,

          a3a1=d2-(d-2)2=2d

          d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,

          6ec8aac122bd4f6e=q2,由qR,且q≠1,得q=-2,

          bn=b?qn1=4?(-2)n1

          (2)令6ec8aac122bd4f6e=dn,則d1+d2+…+dn=an+1,(nN*),

          dn=an+1an=2,

          6ec8aac122bd4f6e=2,即cn=2?bn=8?(-2)n1;∴Sn=6ec8aac122bd4f6e[1-(-2)n].

          6ec8aac122bd4f6e

          [例2]設(shè)An為數(shù)列{an}的前n項(xiàng)和,An=6ec8aac122bd4f6e (an-1),數(shù)列{bn}的通項(xiàng)公式為bn=4n+3;

          (1)求數(shù)列{an}的通項(xiàng)公式;

          (2)把數(shù)列{an}與{bn}的公共項(xiàng)按從小到大的順序排成一個(gè)新的數(shù)列,證明:數(shù)列{dn}的通項(xiàng)公式為dn=32n+1;

          (3)設(shè)數(shù)列{dn}的第n項(xiàng)是數(shù)列{bn}中的第r項(xiàng),Br為數(shù)列{bn}的前r項(xiàng)的和;Dn為數(shù)列{dn}的前n項(xiàng)和,Tn=BrDn,求6ec8aac122bd4f6e6ec8aac122bd4f6e.

          命題意圖:本題考查數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式及其相互關(guān)系;集合的相關(guān)概念,數(shù)列極限,以及邏輯推理能力.

          知識(shí)依托:利用項(xiàng)與和的關(guān)系求an是本題的先決;(2)問(wèn)中探尋{an}與{bn}的相通之處,須借助于二項(xiàng)式定理;而(3)問(wèn)中利用求和公式求和則是最基本的知識(shí)點(diǎn).

          錯(cuò)解分析:待證通項(xiàng)dn=32n+1an的共同點(diǎn)易被忽視而寸步難行;注意不到rn的關(guān)系,使Tn中既含有n,又含有r,會(huì)使所求的極限模糊不清.

          技巧與方法:(1)問(wèn)中項(xiàng)與和的關(guān)系為常規(guī)方法,(2)問(wèn)中把3拆解為4-1,再利用二項(xiàng)式定理,尋找數(shù)列通項(xiàng)在形式上相通之處堪稱(chēng)妙筆;(3)問(wèn)中挖掘出nr的關(guān)系,正確表示Br,問(wèn)題便可迎刃而解.

          解:(1)由An=6ec8aac122bd4f6e(an-1),可知An+1=6ec8aac122bd4f6e(an+1-1),

          an+1an=6ec8aac122bd4f6e (an+1an),即6ec8aac122bd4f6e=3,而a1=A1=6ec8aac122bd4f6e (a1-1),得a1=3,所以數(shù)列是以3為首項(xiàng),公比為3的等比數(shù)列,數(shù)列{an}的通項(xiàng)公式an=3n.

          (2)∵32n+1=3?32n=3?(4-1)2n=3?[42n+C6ec8aac122bd4f6e?42n1(-1)+…+C6ec8aac122bd4f6e?4?(-1)+(-1)2n]=4n+3,

          ∴32n+1∈{bn}.而數(shù)32n=(4-1)2n=42n+C6ec8aac122bd4f6e?42n1?(-1)+…+C6ec8aac122bd4f6e?4?(-1)+(-1)2n=(4k+1),

          ∴32n6ec8aac122bd4f6e{bn},而數(shù)列{an}={a2n+1}∪{a2n},∴dn=32n+1.

          (3)由32n+1=4?r+3,可知r=6ec8aac122bd4f6e,

          Br=6ec8aac122bd4f6e,

          6ec8aac122bd4f6e

          ●錦囊妙計(jì)

          1.數(shù)列中數(shù)的有序性是數(shù)列定義的靈魂,要注意辨析數(shù)列中的項(xiàng)與數(shù)集中元素的異同.因此在研究數(shù)列問(wèn)題時(shí)既要注意函數(shù)方法的普遍性,又要注意數(shù)列方法的特殊性.

          2.數(shù)列{an}前n 項(xiàng)和Sn與通項(xiàng)an的關(guān)系式:an=6ec8aac122bd4f6e

          3.求通項(xiàng)常用方法

          ①作新數(shù)列法.作等差數(shù)列與等比數(shù)列.

          ②累差疊加法.最基本形式是:an=(anan1+(an1+an2)+…+(a2a1)+a1.

          ③歸納、猜想法.

          4.數(shù)列前n項(xiàng)和常用求法

          ①重要公式

          1+2+…+n=6ec8aac122bd4f6en(n+1)

          12+22+…+n2=6ec8aac122bd4f6en(n+1)(2n+1)

          13+23+…+n3=(1+2+…+n)2=6ec8aac122bd4f6en2(n+1)2

          ②等差數(shù)列中Sm+n=Sm+Sn+mnd,等比數(shù)列中Sm+n=Sn+qnSm=Sm+qmSn.

          ③裂項(xiàng)求和:將數(shù)列的通項(xiàng)分成兩個(gè)式子的代數(shù)和,即an=f(n+1)-f(n),然后累加時(shí)抵消中間的許多項(xiàng).應(yīng)掌握以下常見(jiàn)的裂項(xiàng):

          6ec8aac122bd4f6e

          ④錯(cuò)項(xiàng)相消法

          ⑤并項(xiàng)求和法

          數(shù)列通項(xiàng)與和的方法多種多樣,要視具體情形選用合適方法.

          ●殲滅難點(diǎn)訓(xùn)練

          一、填空題

          1.(★★★★★)設(shè)zn=(6ec8aac122bd4f6e)n,(nN*),記Sn=|z2z1|+|z3z2|+…+|zn+1zn|,則6ec8aac122bd4f6eSn=_________.

          試題詳情

          2.(★★★★★)作邊長(zhǎng)為a的正三角形的內(nèi)切圓,在這個(gè)圓內(nèi)作新的內(nèi)接正三角形,在新的正三角形內(nèi)再作內(nèi)切圓,如此繼續(xù)下去,所有這些圓的周長(zhǎng)之和及面積之和分別為_(kāi)________.

          試題詳情

          二、解答題

          3.(★★★★)數(shù)列{an}滿(mǎn)足a1=2,對(duì)于任意的nN*都有an>0,且(n+1)an2+an?an+1

          試題詳情

          nan+12=0,又知數(shù)列{bn}的通項(xiàng)為bn=2n1+1.

          (1)求數(shù)列{an}的通項(xiàng)an及它的前n項(xiàng)和Sn;

          (2)求數(shù)列{bn}的前n項(xiàng)和Tn;

          (3)猜想SnTn的大小關(guān)系,并說(shuō)明理由.

          試題詳情

          4.(★★★★)數(shù)列{an}中,a1=8,a4=2且滿(mǎn)足an+2=2an+1an,(nN*).

          (1)求數(shù)列{an}的通項(xiàng)公式;

          (2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn;

          試題詳情

          (3)設(shè)bn=6ec8aac122bd4f6e(nN*),Tn=b1+b2+……+bn(nN*),是否存在最大的整數(shù)m,使得對(duì)任意nN*均有Tn6ec8aac122bd4f6e成立?若存在,求出m的值;若不存在,說(shuō)明理由.

          試題詳情

          5.(★★★★★)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=(m+1)-man.對(duì)任意正整數(shù)n都成立,其中m為常數(shù),且m<-1.

          (1)求證:{an}是等比數(shù)列;

          試題詳情

          (2)設(shè)數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿(mǎn)足:b1=6ec8aac122bd4f6ea1,bn=f(bn1)(n≥2,nN*).試問(wèn)當(dāng)m為何值時(shí),6ec8aac122bd4f6e成立?

          試題詳情

          6.(★★★★★)已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.

          (1)求數(shù)列{bn}的通項(xiàng)bn;

          試題詳情

          (2)設(shè)數(shù)列{an}的通項(xiàng)an=loga(1+6ec8aac122bd4f6e)(其中a>0且a≠1),記Sn是數(shù)列{an}的前n項(xiàng)和,試比較Sn6ec8aac122bd4f6elogabn+1的大小,并證明你的結(jié)論.

          試題詳情

          7.(★★★★★)設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿(mǎn)足關(guān)系式:3tSn-(2t+3)Sn1=3t(t>0,n=2,3,4…).

          (1)求證:數(shù)列{an}是等比數(shù)列;

          試題詳情

          (2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f(6ec8aac122bd4f6e)(n=2,3,4…),求數(shù)列{bn}的通項(xiàng)bn;

          (3)求和:b1b2b2b3+b3b4-…+b2n1b2nb2nb2n+1.

          試題詳情

          難點(diǎn)磁場(chǎng)

          解析:(1)由題意,當(dāng)n=1時(shí),有6ec8aac122bd4f6eS1=a1,

          6ec8aac122bd4f6e,解得a1=2.當(dāng)n=2時(shí),有6ec8aac122bd4f6eS2=a1+a2,將a1=2代入,整理得(a2-2)2=16,由a2>0,解得a2=6.當(dāng)n=3時(shí),有6ec8aac122bd4f6e,S3=a1+a2+a3,將a1=2,a2=6代入,整理得(a3-2)2=64,由a3>0,解得a3=10.故該數(shù)列的前3項(xiàng)為2,6,10.

          (2)解法一:由(1)猜想數(shù)列{an}.有通項(xiàng)公式an=4n-2.下面用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式是an=4n-2,(nN*).

          ①當(dāng)n=1時(shí),因?yàn)?×1-2=2,,又在(1)中已求出a1=2,所以上述結(jié)論成立.

          ②假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即有ak=4k-2,由題意,有6ec8aac122bd4f6e,將ak=4k-2.代入上式,解得2k=6ec8aac122bd4f6e,得Sk=2k2,由題意,有6ec8aac122bd4f6e,Sk+1=Sk+ak+1,將Sk=2k2代入得(6ec8aac122bd4f6e)2=2(ak+1+2k2),整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k,所以ak+1=2+4k=4(k+1)-2,即當(dāng)n=k+1時(shí),上述結(jié)論成立.根據(jù)①②,上述結(jié)論對(duì)所有的自然數(shù)nN*成立.

          解法二:由題意知6ec8aac122bd4f6e,(nN*).整理得,Sn=6ec8aac122bd4f6e(an+2)2,由此得Sn+1=6ec8aac122bd4f6e(an+1+2)2,∴an+1=Sn+1Sn=6ec8aac122bd4f6e[(an+1+2)2-(an+2)2].整理得(an+1+an)(an+1an-4)=0,由題意知an+1+an≠0,∴an+1an=4,即數(shù)列{an}為等差數(shù)列,其中a1=2,公差d=4.∴an=a1+(n-1)d=2+4(n-1),即通項(xiàng)公式為an=4n-2.

          解法三:由已知得6ec8aac122bd4f6e,(nN*)①,所以有6ec8aac122bd4f6e②,由②式得6ec8aac122bd4f6e,整理得Sn+1-26ec8aac122bd4f6e?6ec8aac122bd4f6e+2-Sn=0,解得6ec8aac122bd4f6e,由于數(shù)列{an}為正項(xiàng)數(shù)列,而6ec8aac122bd4f6e,因而6ec8aac122bd4f6e,即{Sn}是以6ec8aac122bd4f6e為首項(xiàng),以6ec8aac122bd4f6e為公差的等差數(shù)列.所以6ec8aac122bd4f6e= 6ec8aac122bd4f6e+(n-1) 6ec8aac122bd4f6e=6ec8aac122bd4f6en,Sn=2n2,

          an=6ec8aac122bd4f6ean=4n-2(nN*).

          (3)令cn=bn-1,則cn=6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          殲滅難點(diǎn)訓(xùn)練

          一、6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          答案:1+6ec8aac122bd4f6e

          2.解析:由題意所有正三角形的邊長(zhǎng)構(gòu)成等比數(shù)列{an},可得an=6ec8aac122bd4f6e,正三角形的內(nèi)切圓構(gòu)成等比數(shù)列{rn},可得rn=6ec8aac122bd4f6ea,?

          ∴這些圓的周長(zhǎng)之和c=6ec8aac122bd4f6e2π(r1+r2+…+rn)=6ec8aac122bd4f6e a2,

          面積之和S=6ec8aac122bd4f6eπ(n2+r22+…+rn2)=6ec8aac122bd4f6ea2

          答案:周長(zhǎng)之和6ec8aac122bd4f6eπa,面積之和6ec8aac122bd4f6ea2

          二、3.解:(1)可解得6ec8aac122bd4f6e,從而an=2n,有Sn=n2+n

          (2)Tn=2n+n-1.

          (3)TnSn=2nn2-1,驗(yàn)證可知,n=1時(shí),T1=S1n=2時(shí)T2S2;n=3時(shí),T3S3;n=4時(shí),T4S4;n=5時(shí),T5S5n=6時(shí)T6S6.猜想當(dāng)n≥5時(shí),TnSn,即2nn2+1

          可用數(shù)學(xué)歸納法證明(略).

          4.解:(1)由an+2=2an+1an6ec8aac122bd4f6ean+2an+1=an+1an可知{an}成等差數(shù)列,?

          d=6ec8aac122bd4f6e=-2,∴an=10-2n.

          (2)由an=10-2n≥0可得n≤5,當(dāng)n≤5時(shí),Sn=-n2+9n,當(dāng)n>5時(shí),Sn=n2-9n+40,故Sn=6ec8aac122bd4f6e

          (3)bn=6ec8aac122bd4f6e

          6ec8aac122bd4f6e;要使Tn6ec8aac122bd4f6e總成立,需6ec8aac122bd4f6eT1=6ec8aac122bd4f6e成立,即m<8且mZ,故適合條件的m的最大值為7.

          5.解:(1)由已知Sn+1=(m+1)-man+1?①,Sn=(m+1)-man②,由①-②,得an+1=manman+1,即(m+1)an+1=man對(duì)任意正整數(shù)n都成立.

          m為常數(shù),且m<-1

          6ec8aac122bd4f6e,即{6ec8aac122bd4f6e}為等比數(shù)列.

          (2)當(dāng)n=1時(shí),a1=m+1-ma1,∴a1=1,從而b1=6ec8aac122bd4f6e.

          由(1)知q=f(m)=6ec8aac122bd4f6e,∴bn=f(bn1)=6ec8aac122bd4f6e (nN*,且n≥2)

          6ec8aac122bd4f6e,即6ec8aac122bd4f6e,∴{6ec8aac122bd4f6e}為等差數(shù)列.∴6ec8aac122bd4f6e=3+(n-1)=n+2,

          6ec8aac122bd4f6e(nN*).

          6ec8aac122bd4f6e

          6.解:(1)設(shè)數(shù)列{bn}的公差為d,由題意得:6ec8aac122bd4f6e解得b1=1,d=3,

          bn=3n-2.

          (2)由bn=3n-2,知Sn=loga(1+1)+loga(1+6ec8aac122bd4f6e)+…+loga(1+6ec8aac122bd4f6e)

          =loga[(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)],6ec8aac122bd4f6elogabn+1=loga6ec8aac122bd4f6e.

          因此要比較Sn6ec8aac122bd4f6elogabn+1的大小,可先比較(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)與6ec8aac122bd4f6e的大小,

          n=1時(shí),有(1+1)>6ec8aac122bd4f6e

          n=2時(shí),有(1+1)(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e

           由此推測(cè)(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e                                ①

          若①式成立,則由對(duì)數(shù)函數(shù)性質(zhì)可判定:

          當(dāng)a>1時(shí),Sn6ec8aac122bd4f6elogabn+1,                                                                           ②

          當(dāng)0<a<1時(shí),Sn6ec8aac122bd4f6elogabn+1,                                                                     ③

          下面用數(shù)學(xué)歸納法證明①式.

          (?)當(dāng)n=1時(shí),已驗(yàn)證①式成立.

          (?)假設(shè)當(dāng)n=k時(shí)(k≥1),①式成立,即:

          6ec8aac122bd4f6e.那么當(dāng)n=k+1時(shí),

          6ec8aac122bd4f6e

          這就是說(shuō)①式當(dāng)n=k+1時(shí)也成立.

          由(?)(?)可知①式對(duì)任何正整數(shù)n都成立.

          由此證得:

          當(dāng)a>1時(shí),Sn6ec8aac122bd4f6elogabn+1;當(dāng)0<a<1時(shí),Sn6ec8aac122bd4f6elogabn+1?.

          7.解:(1)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t.

          a2=6ec8aac122bd4f6e.

          又3tSn-(2t+3)Sn1=3t,                                                                                  ①

          3tSn1-(2t+3)Sn2=3t                                                                                      

          ①-②得3tan-(2t+3)an1=0.

          6ec8aac122bd4f6e,n=2,3,4…,所以{an}是一個(gè)首項(xiàng)為1公比為6ec8aac122bd4f6e的等比數(shù)列;

          (2)由f(t)= 6ec8aac122bd4f6e=6ec8aac122bd4f6e,得bn=f(6ec8aac122bd4f6e)=6ec8aac122bd4f6e+bn1?.

          可見(jiàn){bn}是一個(gè)首項(xiàng)為1,公差為6ec8aac122bd4f6e的等差數(shù)列.

          于是bn=1+6ec8aac122bd4f6e(n-1)=6ec8aac122bd4f6e;

          (3)由bn=6ec8aac122bd4f6e,可知{b2n1}和{b2n}是首項(xiàng)分別為1和6ec8aac122bd4f6e,公差均為6ec8aac122bd4f6e的等差數(shù)列,于是b2n=6ec8aac122bd4f6e,

          b1b2b2b3+b3b4b4b5+…+b2n1b2nb2nb2n+1?

          =b2(b1b3)+b4(b3b5)+…+b2n(b2n1b2n+1)

          =-6ec8aac122bd4f6e (b2+b4+…+b2n)=-6ec8aac122bd4f6e?6ec8aac122bd4f6en(6ec8aac122bd4f6e+6ec8aac122bd4f6e)=-6ec8aac122bd4f6e (2n2+3n)


          同步練習(xí)冊(cè)答案