日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2009年高考數(shù)學(xué)難點(diǎn)突破專題輔導(dǎo)二十五

          難點(diǎn)25  圓錐曲線綜合題

          圓錐曲線的綜合問題包括:解析法的應(yīng)用,與圓錐曲線有關(guān)的定值問題、最值問題、參數(shù)問題、應(yīng)用題和探索性問題,圓錐曲線知識的縱向聯(lián)系,圓錐曲線知識和三角、復(fù)數(shù)等代數(shù)知識的橫向聯(lián)系,解答這部分試題,需要較強(qiáng)的代數(shù)運(yùn)算能力和圖形認(rèn)識能力,要能準(zhǔn)確地進(jìn)行數(shù)與形的語言轉(zhuǎn)換和運(yùn)算,推理轉(zhuǎn)換,并在運(yùn)算過程中注意思維的嚴(yán)密性,以保證結(jié)果的完整.

          ●難點(diǎn)磁場

          (★★★★)若橢圓6ec8aac122bd4f6e=1(ab>0)與直線lx+y=1在第一象限內(nèi)有兩個不同的交點(diǎn),求a、b所滿足的條件,并畫出點(diǎn)P(a,b)的存在區(qū)域.

          ●案例探究

          [例1]已知圓k過定點(diǎn)A(a,0)(a>0),圓心k在拋物線Cy2=2ax上運(yùn)動,MN為圓ky軸上截得的弦.

          (1)試問MN的長是否隨圓心k的運(yùn)動而變化?

          (2)當(dāng)|OA|是|OM|與|ON|的等差中項時,拋物線C的準(zhǔn)線與圓k有怎樣的位置關(guān)系?

          命題意圖:本題考查圓錐曲線科內(nèi)綜合的知識及學(xué)生綜合、靈活處理問題的能力,屬

          ★★★★★級題目.

          知識依托:弦長公式,韋達(dá)定理,等差中項,絕對值不等式,一元二次不等式等知識.

          錯解分析:在判斷dR的關(guān)系時,x0的范圍是學(xué)生容易忽略的.

          技巧與方法:對第(2)問,需將目標(biāo)轉(zhuǎn)化為判斷d=x0+6ec8aac122bd4f6eR=6ec8aac122bd4f6e的大小.

          解:(1)設(shè)圓心k(x0,y0),且y02=2ax0,

          k的半徑R=|AK|=6ec8aac122bd4f6e

          ∴|MN|=26ec8aac122bd4f6e=2a(定值)

          ∴弦MN的長不隨圓心k的運(yùn)動而變化.

          (2)設(shè)M(0,y1)、N(0,y2)在圓k:(xx0)2+(yy0)2=x02+a2中,

          x=0,得y2-2y0y+y02a2=0

          y1y2=y02a2

          ∵|OA|是|OM|與|ON|的等差中項.

          ∴|OM|+|ON|=|y1|+|y2|=2|OA|=2a.

          又|MN|=|y1y2|=2a

          ∴|y1|+|y2|=|y1y2|

          y1y2≤0,因此y02a2≤0,即2ax0a2≤0.

          ∴0≤x06ec8aac122bd4f6e.

          圓心k到拋物線準(zhǔn)線距離d=x0+6ec8aac122bd4f6ea,而圓k半徑R=6ec8aac122bd4f6ea.

          且上兩式不能同時取等號,故圓k必與準(zhǔn)線相交.

          [例2]如圖,已知橢圓6ec8aac122bd4f6e=1(2≤m≤5),過其左焦點(diǎn)且斜率為1的直線與橢圓及其準(zhǔn)線的交點(diǎn)從左到右的順序為A、B、C、D,設(shè)f(m)=||AB|-|CD||

          (1)求f(m)的解析式;

          (2)求f(m)的最值.

          6ec8aac122bd4f6e

          命題意圖:本題主要考查利用解析幾何的知識建立函數(shù)關(guān)系式,并求其最值,體現(xiàn)了圓錐曲線與代數(shù)間的科間綜合.屬★★★★★級題目.

          知識依托:直線與圓錐曲線的交點(diǎn),韋達(dá)定理,根的判別式,利用單調(diào)性求函數(shù)的最值.

          錯解分析:在第(1)問中,要注意驗證當(dāng)2≤m≤5時,直線與橢圓恒有交點(diǎn).

          技巧與方法:第(1)問中,若注意到xA,xD為一對相反數(shù),則可迅速將||AB|-|CD||化簡.第(2)問,利用函數(shù)的單調(diào)性求最值是常用方法.

          解:(1)設(shè)橢圓的半長軸、半短軸及半焦距依次為a、bc,則a2=m,b2=m-1,c2=a2b2=1

          ∴橢圓的焦點(diǎn)為F1(-1,0),F2(1,0).

          故直線的方程為y=x+1,又橢圓的準(zhǔn)線方程為x6ec8aac122bd4f6e,即xm.

          A(-m,-m+1),D(m,m+1)

          考慮方程組6ec8aac122bd4f6e,消去y得:(m-1)x2+m(x+1)2=m(m-1)

          整理得:(2m-1)x2+2mx+2mm2=0

          Δ=4m2-4(2m-1)(2mm2)=8m(m-1)2

          ∵2≤m≤5,∴Δ>0恒成立,xB+xC=6ec8aac122bd4f6e.

          又∵A、B、C、D都在直線y=x+1上

          ∴|AB|=|xBxA|=6ec8aac122bd4f6e=(xBxA)?6ec8aac122bd4f6e,|CD|=6ec8aac122bd4f6e(xDxC)

          ∴||AB|-|CD||=6ec8aac122bd4f6e|xBxA+xDxC|=6ec8aac122bd4f6e|(xB+xC)-(xA+xD)|

          又∵xA=-m,xD=m,∴xA+xD=0

          ∴||AB|-|CD||=|xB+xC|?6ec8aac122bd4f6e=|6ec8aac122bd4f6e|?6ec8aac122bd4f6e=6ec8aac122bd4f6e (2≤m≤5)

          f(m)=6ec8aac122bd4f6e,m∈[2,5].

          (2)由f(m)=6ec8aac122bd4f6e,可知f(m)=6ec8aac122bd4f6e

          又2-6ec8aac122bd4f6e≤2-6ec8aac122bd4f6e≤2-6ec8aac122bd4f6e

          f(m)∈[6ec8aac122bd4f6e

          f(m)的最大值為6ec8aac122bd4f6e,此時m=2;f(m)的最小值為6ec8aac122bd4f6e,此時m=5.

          [例3]艦A在艦B的正東6千米處,艦C在艦B的北偏西30°且與B相距4千米,它們準(zhǔn)備捕海洋動物,某時刻A發(fā)現(xiàn)動物信號,4秒后B、C同時發(fā)現(xiàn)這種信號,A發(fā)射麻醉炮彈.設(shè)艦與動物均為靜止的,動物信號的傳播速度為1千米/秒,炮彈的速度是6ec8aac122bd4f6e千米/秒,其中g為重力加速度,若不計空氣阻力與艦高,問艦A發(fā)射炮彈的方位角和仰角應(yīng)是多少?

          命題意圖:考查圓錐曲線在實際問題中的應(yīng)用,及將實際問題轉(zhuǎn)化成數(shù)學(xué)問題的能力,屬★★★★★級題目.

          知識依托:線段垂直平分線的性質(zhì),雙曲線的定義,兩點(diǎn)間的距離公式,斜拋運(yùn)動的曲線方程.

          錯解分析:答好本題,除要準(zhǔn)確地把握好點(diǎn)P的位置(既在線段BC的垂直平分線上,又在以A、B為焦點(diǎn)的拋物線上),還應(yīng)對方位角的概念掌握清楚.

          技巧與方法:通過建立恰當(dāng)?shù)闹苯亲鴺?biāo)系,將實際問題轉(zhuǎn)化成解析幾何問題來求解.對空間物體的定位,一般可利用聲音傳播的時間差來建立方程.

          解:取AB所在直線為x軸,以AB的中點(diǎn)為原點(diǎn),建立如圖所示的直角坐標(biāo)系.由題意可知,A、BC艦的坐標(biāo)為(3,0)、(-3,0)、(-5,26ec8aac122bd4f6e).

          6ec8aac122bd4f6e

          由于B、C同時發(fā)現(xiàn)動物信號,記動物所在位置為P,則|PB|=|PC|.于是P在線段BC的中垂線上,易求得其方程為6ec8aac122bd4f6ex-3y+76ec8aac122bd4f6e=0.

          又由A、B兩艦發(fā)現(xiàn)動物信號的時間差為4秒,知|PB|-|PA|=4,故知P在雙曲線6ec8aac122bd4f6e=1的右支上.

          直線與雙曲線的交點(diǎn)為(8,56ec8aac122bd4f6e),此即為動物P的位置,利用兩點(diǎn)間距離公式,可得|PA|=10.

          據(jù)已知兩點(diǎn)的斜率公式,得kPA=6ec8aac122bd4f6e,所以直線PA的傾斜角為60°,于是艦A發(fā)射炮彈的方位角應(yīng)是北偏東30°.

          設(shè)發(fā)射炮彈的仰角是θ,初速度v0=6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

          ∴sin2θ=6ec8aac122bd4f6e,∴仰角θ=30°.

          ●錦囊妙計

          解決圓錐曲線綜合題,關(guān)鍵是熟練掌握每一種圓錐曲線的定義、標(biāo)準(zhǔn)方程、圖形與幾何性質(zhì),注意挖掘知識的內(nèi)在聯(lián)系及其規(guī)律,通過對知識的重新組合,以達(dá)到鞏固知識、提高能力的目的.

          (1)對于求曲線方程中參數(shù)的取值范圍問題,需構(gòu)造參數(shù)滿足的不等式,通過求不等式(組)求得參數(shù)的取值范圍;或建立關(guān)于參數(shù)的目標(biāo)函數(shù),轉(zhuǎn)化為函數(shù)的值域.

          (2)對于圓錐曲線的最值問題,解法常有兩種:當(dāng)題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,可考慮利用數(shù)形結(jié)合法解;當(dāng)題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可先建立目標(biāo)函數(shù),再求這個函數(shù)的最值.

          ●殲滅難點(diǎn)訓(xùn)練

          一、選擇題

          1.(★★★★)已知AB、C三點(diǎn)在曲線y=6ec8aac122bd4f6e上,其橫坐標(biāo)依次為1,m,4(1<m<4),當(dāng)△ABC的面積最大時,m等于(    )

          試題詳情

          A.3                       B.6ec8aac122bd4f6e                                   C.6ec8aac122bd4f6e                                   D.6ec8aac122bd4f6e

          試題詳情

          2.(★★★★★)設(shè)u,vR,且|u|≤6ec8aac122bd4f6e,v>0,則(uv)2+(6ec8aac122bd4f6e)2的最小值為(    )

          試題詳情

          A.4                       B.2                              C.8                              D.26ec8aac122bd4f6e

          試題詳情

          二、填空題

          3.(★★★★★)A是橢圓長軸的一個端點(diǎn),O是橢圓的中心,若橢圓上存在一點(diǎn)P,使

          試題詳情

          OPA=6ec8aac122bd4f6e,則橢圓離心率的范圍是_________.

          試題詳情

          4.(★★★★)一輛卡車高3米,寬1.6米,欲通過拋物線形隧道,拱口寬恰好是拋物線的通徑長,若拱口寬為a米,則能使卡車通過的a的最小整數(shù)值是_________.

          試題詳情

          5.(★★★★★)已知拋物線y=x2-1上一定點(diǎn)B(-1,0)和兩個動點(diǎn)P、Q,當(dāng)P在拋物線上運(yùn)動時,BPPQ,則Q點(diǎn)的橫坐標(biāo)的取值范圍是_________.

          試題詳情

          三、解答題

          6.(★★★★★)已知直線y=kx-1與雙曲線x2y2=1的左支交于A、B兩點(diǎn),若另一條直線l經(jīng)過點(diǎn)P(-2,0)及線段AB的中點(diǎn)Q,求直線ly軸上的截距b的取值范圍.

          試題詳情

          7.(★★★★★)已知拋物線Cy2=4x.

          (1)若橢圓左焦點(diǎn)及相應(yīng)的準(zhǔn)線與拋物線C的焦點(diǎn)F及準(zhǔn)線l分別重合,試求橢圓短軸端點(diǎn)B與焦點(diǎn)F連線中點(diǎn)P的軌跡方程;

          (2)若M(m,0)是x軸上的一定點(diǎn),Q是(1)所求軌跡上任一點(diǎn),試問|MQ|有無最小值?若有,求出其值;若沒有,說明理由.

          試題詳情

          6ec8aac122bd4f6e8.(★★★★★)如圖,6ec8aac122bd4f6e為半圓,AB為半圓直徑,O為半圓圓心,且ODABQ為線段OD的中點(diǎn),已知|AB|=4,曲線CQ點(diǎn),動點(diǎn)P在曲線C上運(yùn)動且保持|PA|+|PB|的值不變.

          (1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;

          試題詳情

          (2)過D點(diǎn)的直線l與曲線C相交于不同的兩點(diǎn)M、N,且MD、N之間,設(shè)6ec8aac122bd4f6e=λ,求λ的取值范圍.

          [學(xué)法指導(dǎo)]怎樣學(xué)好圓錐曲線

          圓錐曲線將幾何與代數(shù)進(jìn)行了完美結(jié)合.借助純代數(shù)的解決手段研究曲線的概念和性質(zhì)及直線與圓錐曲線的位置關(guān)系,從數(shù)學(xué)家笛卡爾開創(chuàng)了坐標(biāo)系那天就已經(jīng)開始.

          高考中它依然是重點(diǎn),主客觀題必不可少,易、中、難題皆有.為此需要我們做到:

          試題詳情

          1.重點(diǎn)掌握橢圓、雙曲線、拋物線的定義和性質(zhì).這些都是圓錐曲線的基石,高考中的題目都涉及到這些內(nèi)容.

          試題詳情

          2.重視求曲線的方程或曲線的軌跡,此處作為高考解答題的命題對象難度較大.所以要掌握住一般方法:定義法、直接法、待定系數(shù)法、相關(guān)點(diǎn)法、參數(shù)法等.

          試題詳情

          3.加強(qiáng)直線與圓錐曲線的位置關(guān)系問題的復(fù)習(xí).此處一直為高考的熱點(diǎn).這類問題常涉及到圓錐曲線的性質(zhì)和直線的基本知識點(diǎn)、線段的中點(diǎn)、弦長、垂直問題,因此分析問題時利用數(shù)形結(jié)合思想和設(shè)而不求法與弦長公式及韋達(dá)定理聯(lián)系去解決.這樣加強(qiáng)了對數(shù)學(xué)各種能力的考查.

          試題詳情

          4.重視對數(shù)學(xué)思想、方法進(jìn)行歸納提煉,達(dá)到優(yōu)化解題思維、簡化解題過程.

          (1)方程思想

          解析幾何的題目大部分都以方程形式給定直線和圓錐曲線,因此把直線與圓錐曲線相交的弦長問題利用韋達(dá)定理進(jìn)行整體處理,就簡化解題運(yùn)算量.

          (2)用好函數(shù)思想方法

          對于圓錐曲線上的一些動點(diǎn),在變化過程中會引入一些相互聯(lián)系、相互制約的量,從而使一些線的長度及a,b,c,e之間構(gòu)成函數(shù)關(guān)系,函數(shù)思想在處理這類問題時就很有效.

          (3)掌握坐標(biāo)法

          坐標(biāo)法是解決有關(guān)圓錐曲線問題的基本方法.近幾年都考查了坐標(biāo)法,因此要加強(qiáng)坐標(biāo)法的訓(xùn)練.

           

          試題詳情

          難點(diǎn)磁場

          解:由方程組6ec8aac122bd4f6e消去y,整理得(a2+b2)x2-2a2x+a2(1-b2)=0                      ①

          則橢圓與直線l在第一象限內(nèi)有兩個不同的交點(diǎn)的充要條件是方程①在區(qū)間(0,1)內(nèi)有兩相異實根,令f(x)=(a2+b2)x2-2a2x+a2(1-b2),則有

          6ec8aac122bd4f6e

          同時滿足上述四個條件的點(diǎn)P(a,b)的存在區(qū)域為下圖所示的陰影部分:

          6ec8aac122bd4f6e

          殲滅難點(diǎn)訓(xùn)練

          一、1.解析:由題意知A(1,1),B(m,6ec8aac122bd4f6e),C(4,2).

          直線AC所在方程為x-3y+2=0,

          點(diǎn)B到該直線的距離為d=6ec8aac122bd4f6e.

          6ec8aac122bd4f6e

          m∈(1,4),∴當(dāng)6ec8aac122bd4f6e時,SABC有最大值,此時m=6ec8aac122bd4f6e.

          答案:B

          2.解析:考慮式子的幾何意義,轉(zhuǎn)化為求圓x2+y2=2上的點(diǎn)與雙曲線xy=9上的點(diǎn)的距離的最小值.

          答案:C

          二、3.解析:設(shè)橢圓方程為6ec8aac122bd4f6e=1(ab>0),以OA為直徑的圓:x2ax+y2=0,兩式聯(lián)立消y6ec8aac122bd4f6ex2ax+b2=0.即e2x2ax+b2=0,該方程有一解x2,一解為a,由韋達(dá)定理x2=6ec8aac122bd4f6ea,0<x2a,即0<6ec8aac122bd4f6eaa6ec8aac122bd4f6ee<1.

          答案:6ec8aac122bd4f6ee<1

          4.解析:由題意可設(shè)拋物線方程為x2=-ay,當(dāng)x=6ec8aac122bd4f6e時,y=-6ec8aac122bd4f6e;當(dāng)x=0.8時,y=-6ec8aac122bd4f6e.由題意知6ec8aac122bd4f6e≥3,即a2-12a-2.56≥0.解得a的最小整數(shù)為13.

          答案:13

          5.解析:設(shè)P(t,t2-1),Q(s,s2-1)

          BPPQ,∴6ec8aac122bd4f6e=-1,

          t2+(s-1)ts+1=0

          tR,∴必須有Δ=(s-1)2+4(s-1)≥0.即s2+2s-3≥0,

          解得s≤-3或s≥1.

          答案:(-∞,-36ec8aac122bd4f6e6ec8aac122bd4f6e1,+∞)

          三、6.解:設(shè)A(x1,y1),B(x2,y2).

          6ec8aac122bd4f6e,得(1-k2x2+2kx-2=0,

          又∵直線AB與雙曲線左支交于AB兩點(diǎn),

          故有6ec8aac122bd4f6e

          解得-6ec8aac122bd4f6ek<-1

          6ec8aac122bd4f6e

          7.解:由拋物線y2=4x,得焦點(diǎn)F(1,0),準(zhǔn)線lx=-1.

          (1)設(shè)P(x,y),則B(2x-1,2y),橢圓中心O′,則|FO′|∶|BF|=e,又設(shè)點(diǎn)Bl的距離為d,則|BF|∶d=e,∴|FO′|∶|BF|=|BF|∶d,即(2x-2)2+(2y)2=2x(2x-2),化簡得P點(diǎn)軌跡方程為y2=x-1(x>1).

          (2)設(shè)Q(x,y),則|MQ|=6ec8aac122bd4f6e6ec8aac122bd4f6e?

          (?)當(dāng)m6ec8aac122bd4f6e≤1,即m6ec8aac122bd4f6e時,函數(shù)t=[x-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6e在(1,+∞)上遞增,故t無最小值,亦即|MQ|無最小值.

          (?)當(dāng)m6ec8aac122bd4f6e>1,即m6ec8aac122bd4f6e時,函數(shù)t=[x2-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6ex=m6ec8aac122bd4f6e處有最小值m6ec8aac122bd4f6e,∴|MQ|min=6ec8aac122bd4f6e.

          8.解:(1)以AB、OD所在直線分別為x軸、y軸,O為原點(diǎn),建立平面直角坐標(biāo)系,?

          ∵|PA|+|PB|=|QA|+|QB|=26ec8aac122bd4f6e>|AB|=4.

          ∴曲線C為以原點(diǎn)為中心,AB為焦點(diǎn)的橢圓.

          設(shè)其長半軸為a,短半軸為b,半焦距為c,則2a=26ec8aac122bd4f6e,∴a=6ec8aac122bd4f6e,c=2,b=1.

          ∴曲線C的方程為6ec8aac122bd4f6e+y2=1.

          (2)設(shè)直線l的方程為y=kx+2,

          代入6ec8aac122bd4f6e+y2=1,得(1+5k2)x2+20kx+15=0.

          Δ=(20k)2-4×15(1+5k2)>0,得k26ec8aac122bd4f6e.由圖可知6ec8aac122bd4f6e=λ

          6ec8aac122bd4f6e

          由韋達(dá)定理得6ec8aac122bd4f6e

          x1=λx2代入得

          6ec8aac122bd4f6e

          兩式相除得6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e                             ①

          6ec8aac122bd4f6eMD、N中間,∴λ<1                                                             ②

          又∵當(dāng)k不存在時,顯然λ=6ec8aac122bd4f6e (此時直線ly軸重合).

           

           


          同步練習(xí)冊答案