日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 文本框: 年級___________    班級___________    學(xué)號____________  姓名___________  考場號__________  座位號___________

……………………………………… 裝 …………………………………… 訂 ……………………………… 線…………………………

湖南師大附中 湖南廣益實(shí)驗(yàn)中學(xué)08-09學(xué)年度第一學(xué)期期考

          高一年級 數(shù)學(xué)必修2

          命題人:蘇林   審題人:李昌平  張宇

          一、選擇題:本大題共10小題,每小題3分,共30分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

          1.將球的半徑變?yōu)樵瓉淼膬杀,則球的體積變?yōu)樵瓉淼?nbsp;  (   )

          試題詳情

              A.2倍       B.4倍      C.8倍        D.0.5倍

          試題詳情

          2.多面體的直觀圖如右圖所示,則其正視圖為(    )

          試題詳情

           

           

           

           

           

           

           

          試題詳情

          3.過點(diǎn)P(2,3)且在兩坐標(biāo)軸上截距相等的直線方程為(    )

          A.3x-2y = 0                   B.x + y-5 = 0    

          C.3x-2y = 0 或x + y-5 = 0      D.2x-3y = 0 或x + y-5 = 0

          試題詳情

          4.關(guān)于斜二側(cè)畫法,下列說法正確的是(    )

          A.三角形的直觀圖可能是一條線段

          B.平行四邊形的直觀圖一定是平行四邊形

          C.正方形的直觀圖是正方形

          D.菱形的直觀圖是菱形

          試題詳情

          5.若l、a、b表示直線,α、β表示平面,下列命題正確的是(    )

          試題詳情

          A.         B.

          試題詳情

          C.        D.

          試題詳情

          6. 直線y = k(x-1)與以A(3,2)、B(2,3)為端點(diǎn)的線段有公共點(diǎn),則k的取值范圍是。

          A.[1, ]     B.[1, ]     C.[1,3]    D.[,3]

          試題詳情

          7.直線x + y-1 = 0與直線x + y + 1 = 0的距離為(     )

          A.2       B.      C.2     D.1

           

          試題詳情

          8.已知△ABC中,三個(gè)頂點(diǎn)的坐標(biāo)分別為A(5,-1),B(1,1),C(2,3),

          座位號

           

           

          則△ABC的形狀為(    )

          A.等邊三角形    B.直角三角形 

          C.等腰直角三角形  D.鈍角三角形

          試題詳情

          9. 已知圓C1:x2 + y2 + 2x + 8y-8 = 0,圓C2:x2 + y2-4x-4y-2 = 0,則圓C1與圓C2的位置關(guān)系為(     )

          A.相交     B.外切     C.內(nèi)切      D.外離

          試題詳情

          10. 如圖,將一正方體沿著相鄰三個(gè)面的對角線截出一個(gè)棱錐,則棱錐的體積與剩下的幾何體的體積之比為(    )

          A.1∶6     B.1∶5     C.1∶2       D.1∶3

          選擇題答題:

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

           

           

           

           

           

           

           

           

           

           

           

          試題詳情

          二、填空題:本大題共5小題,每小題4分,共20分。把答案填在對應(yīng)題號后的橫線上。

          11.空間直角坐標(biāo)系中兩點(diǎn)A(0,0,1),B(0,1,0),則線段AB的長度為     .

          試題詳情

          12.已知圓的方程為x2 + y2-2x + 4y + 1 = 0,則此圓的圓心坐標(biāo)和半徑分別為             .

           

          試題詳情

          13.圓臺的上下底面半徑分別為1、2,母線與底面的夾角為60°,則圓臺的側(cè)面積           .

           

          試題詳情

          14.已知線段AB的端點(diǎn)B的坐標(biāo)為(4,0),端點(diǎn)A在圓x2 + y2 = 1上運(yùn)動,則線段AB的中點(diǎn)的軌跡方程為           

           

          試題詳情

          15.如圖,直三棱柱ABC―A1B1C1中(側(cè)棱垂直于底面),∠ABC = 90°,且AB = BC = AA1,則BC1與面ACC1A1所成的角的大小為            .

           

          試題詳情

          三、解答題:本大題共6小題,共50分。解答應(yīng)寫出文字說明、證明過程或演算步驟.

          16.(本小題滿分8分)

          直線l過直線x + y-2 = 0和直線x-y + 4 = 0的交點(diǎn),且與直線3x-2y + 4 = 0平行,求直線l的方程.

           

           

          試題詳情

          17.(本小題滿分8分)

          如圖,正方體ABCD―A1B1C1D1中,E為DD1中點(diǎn),

          (1)求證:BD1∥平面AEC;

          (2)求:異面直線BD與AD1所成的角的大小.

           

           

           

           

           

           

           

           

          試題詳情

          18.(本小題滿分8分)

          已知圓心為C的圓經(jīng)過點(diǎn)A(1,0),B(2,1),且圓心C在y軸上,求此圓的方程。

           

              

           

           

           

           

           

           

           

          試題詳情

          19.(本小題滿分8分)

          已知,過點(diǎn)M(-1,1)的直線l被圓C:x2 + y2-2x + 2y-14 = 0所截得的弦長為4,求直線l的方程.

            

           

           

           

           

           

           

           

           

           

           

           

          試題詳情

          文本框: ……………………………………… 裝 …………………………………… 訂 ……………………………… 線…………………………
20.(本小題滿分8分)

          如圖,AB是⊙O的直徑,PA⊥⊙O所在的平面,C是圓上一點(diǎn),∠ABC = 30°,PA = AB.        

          試題詳情

          (1)求證:平面PAC⊥平面PBC;

          (2)求直線PC與平面ABC所成角的正切值;

          (3)求二面角A―PB―C的正弦值.

           

           

           

           

           

           

           

           

           

           

           

          試題詳情

          21.(本小題滿分9分)

          試題詳情

          在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的10海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北40海里處有一個(gè)雷達(dá)觀測站A,某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)A北偏東30°且與點(diǎn)A相距100海里的位置B,經(jīng)過2小時(shí)又測得該船已行駛到點(diǎn)A北偏東60°且與點(diǎn)A相距20海里的位置C.

          (I)求該船的行駛速度(單位:海里/小時(shí));

          (II)若該船不改變航行方向繼續(xù)行駛.判斷

          它是否會進(jìn)入警戒水域,并說明理由.

           

           

           

           

           

           

           

           

           

           

           

           

           

          湖南師大附中數(shù)學(xué)必修2模塊結(jié)業(yè)考試試卷

          命題人:蘇林   審題人:李昌平  張宇

          試題詳情

          一、選擇題:本大題共10小題,每小題3分,共30分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

          1.將球的半徑變?yōu)樵瓉淼膬杀,則球的體積變?yōu)樵瓉淼? ( C  )教材(P35.1)

          試題詳情

              A.2倍       B.4倍      C.8倍        D.0.5倍

          試題詳情

          2.多面體的直觀圖如右圖所示,則其正視圖為(  A  )教材(P15.1)

          試題詳情

           

           

           

           

           

           

           

          試題詳情

          3.過點(diǎn)P(2,3)且在兩坐標(biāo)軸上截距相等的直線方程為(  C  )教材(P100.9)

          A.3x-2y = 0                   B.x + y-5 = 0    

          C.3x-2y = 0 或x + y-5 = 0      D.2x-3y = 0 或x + y-5 = 0

           

          試題詳情

          4.關(guān)于斜二側(cè)畫法,下列說法正確的是(  B  )教材(P19.3)

          A.三角形的直觀圖可能是一條線段

          B.平行四邊形的直觀圖一定是平行四邊形

          C.正方形的直觀圖是正方形

          D.菱形的直觀圖是菱形

           

          試題詳情

          5.若l、a、b表示直線,α、β表示平面,下列命題正確的是( C )教材(P49.例4)

          試題詳情

          A.         B.

          試題詳情

          C.        D.

           

          試題詳情

          6. 直線y = k(x-1)與以A(3,2)、B(2,3)為端點(diǎn)的線段有公共點(diǎn),則k的取值范圍是(  C  )。教材(P90.6)

          A.[1, ]     B.[1, ]     C.[1,3]    D.[,3]

           

          試題詳情

          7.直線x + y-1 = 0與直線x + y + 1 = 0的距離為(  B  )教材(P110.10)

          A.2       B.      C.2     D.1

           

          試題詳情

          8.已知△ABC中,三個(gè)頂點(diǎn)的坐標(biāo)分別為A(5,-1),B(1,1),C(2,3),則△ABC的形狀為(  B  )教材(P89.例6)

          A.等邊三角形    B.直角三角形   C.等腰直角三角形  D.鈍角三角形

           

          試題詳情

          9. 已知圓C1:x2 + y2 + 2x + 8y-8 = 0,圓C2:x2 + y2-4x-4y-2 = 0,則圓C1與圓C2的位置關(guān)系為(  A  )教材(P129.例3)

          A.相交     B.外切     C.內(nèi)切      D.外離

          試題詳情

          10. 如圖,將一正方體沿著相鄰三個(gè)面的對角線截出一個(gè)棱錐,則棱錐的體積與剩下的幾何體的體積之比為(  B  )教材(P28.3)

          A.1∶6     B.1∶5     C.1∶2       D.1∶3

           

           

           

          試題詳情

          二、填空題:本大題共5小題,每小題4分,共20分。把答案填在對應(yīng)題號后的橫線上。

          11.空間直角坐標(biāo)系中兩點(diǎn)A(0,0,1),B(0,1,0),則線段AB的長度為    . 教材(P138.練習(xí)1)

          試題詳情

          12.已知圓的方程為x2 + y2-2x + 4y + 1 = 0,則此圓的圓心坐標(biāo)和半徑分別為  (1,-2,2            . 教材(P121思考題)

           

          試題詳情

          13.圓臺的上下底面半徑分別為1、2,母線與底面的夾角為60°,則圓臺的側(cè)面積    6π      . 教材(P24.探究2)

           

          試題詳情

          14.已知線段AB的端點(diǎn)B的坐標(biāo)為(4,0),端點(diǎn)A在圓x2 + y2 = 1上運(yùn)動,則線段AB的中點(diǎn)的軌跡方程為            (x-2)2 + y2 =

           

          試題詳情

          15.如圖,直三棱柱ABC―A1B1C1中(側(cè)棱垂直于底面),∠ABC = 90°,且AB = BC = AA1,則BC1與面ACC1A1所成的角的大小為   30°      . 教材(P66.例2)

           

           

          試題詳情

          三、解答題:本大題共6小題,共50分。解答應(yīng)寫出文字說明、證明過程或演算步驟.

          16.(本小題滿分8分)

          直線l過直線x + y-2 = 0和直線x-y + 4 = 0的交點(diǎn),且與直線3x-2y + 4 = 0平行,求直線l的方程. 教材(P109.5)

          試題詳情

          解法一:聯(lián)立方程:解得 ,即直線l過點(diǎn)(-1,3),

          由直線l與直線3x-2y + 4 = 0平行得:直線l的斜率為,

          試題詳情

          所以直線l的方程為:y-3 = (x + 1) 即3x-2y + 9 = 0.

          解法二:∵直線x + y-2 = 0不與3x-2y + 4 = 0平行

          ∴可設(shè)符合條件的直線l的方程為:x-y + 4 + λ(x + y-2)= 0

                  整理得:(1 + λ)x + (λ-1)y + 4-2λ = 0

                  ∵直線l與直線3x-2y + 4 = 0平行

          ∴  解得λ =

                  ∴直線l的方程為:x- y + = 0 即3x-2y + 9 = 0

           

          試題詳情

          17.(本小題滿分8分)

          如圖,正方體ABCD―A1B1C1D1中,E為DD1中點(diǎn),

          (1)求證:BD1∥平面AEC;

          (2)求:異面直線BD與AD1所成的角的大小.

          教材(P56.2)

          證明:(1)設(shè)AC、BD交點(diǎn)為O,連結(jié)EO,

                ∵E、O分別是DD1、BD中點(diǎn)

                ∴EO∥BD1

          試題詳情

                又∵EO 面AEC,BD1∥面AEC

                ∴BD1∥平面AEC

               (2)連結(jié)B1D1,AB1

                ∵DD1 ∥=BB1  ∴B1D1 ∥=BD

                ∴∠AD1B1即為BD與AD1所成的角

                在正方體中有面對角線AD1 = D1B1 = AB1

                ∴△AD1B1為正三角形

                ∴∠AD1B1 = 60°

                即異面直線BD與AD1所成的角的大小為60°

          試題詳情

          18.(本小題滿分8分)

          已知圓心為C的圓經(jīng)過點(diǎn)A(1,0),B(2,1),且圓心C在y軸上,求此圓的方程。

          教材(P120.例3)

              解法一:設(shè)圓心C的坐標(biāo)為(0,b),由|CA| = |CB|得:

                        解得:b = 2

                      ∴C點(diǎn)的坐標(biāo)為(0,2)

                      ∴圓C的半徑 = |CA| =

                      ∴圓C的方程為:x2 + (y-2)2 = 5 即x2 + y2-4x-1 = 0

          解法二:AB的中點(diǎn)為(,),中垂線的斜率為-1

                  ∴AB的中垂線的方程為y- = -(x-)

                  令x = 0求得y = 2,即圓C的圓心為(0,2)

                      ∴圓C的半徑 = |CA| =

                      ∴圓C的方程為:x2 + (y-2)2 = 5 即x2 + y2-4x-1 = 0

           

          試題詳情

          19.(本小題滿分8分)

          已知,過點(diǎn)M(-1,1)的直線l被圓C:x2 + y2-2x + 2y-14 = 0所截得的弦長為4,求直線l的方程. (P127.例2)

              解:由圓的方程可求得圓心C的坐標(biāo)為(1,-1),半徑為4

                  ∵直線l被圓C所截得的弦長為4

                  ∴圓心C到直線l的距離為2

                  (1)若直線l的斜率不存在,則直線l的方程為x =-1,此時(shí)C到l的距離為2,可求得弦長為4,符合題意。

                (2)若直線l的斜率存在,設(shè)為k, 則直線l的方程為y-1 = k(x + 1)

          即kx-y + k + 1 = 0, ∵圓心C到直線l的距離為2

                  ∴ = 2  ∴k2 + 2k + 1 = k2 + 1

                  ∴k = 0   ∴直線l的方程為y =1

          試題詳情

                綜上(1)(2)可得:直線l的方程為x =-1或 y =1.

           

          試題詳情

          20.(本小題滿分8分)

          如圖,AB是⊙O的直徑,PA⊥⊙O所在的平面,C是圓上一點(diǎn),∠ABC = 30°,PA = AB.        教材(P69.例3)

          試題詳情

          (1)求證:平面PAC⊥平面PBC;

          (2)求直線PC與平面ABC所成角的正切值;

          (3)求二面角A―PB―C的正弦值.

          解:(1)證明:∵AB是直徑  ∴∠ACB = 90°,即BC⊥AC

          ∴PA⊥BC

          試題詳情

          ∴BC⊥平面PAC  又BC平面PBC

          ∴平面PBC⊥平面PAC

             (2)∵PA⊥平面ABC

                  ∴直線PC與平面ABC所成角即∠PCA

                  設(shè)AC = 1,∵∠ABC = 30°∴PA = AB = 2

                  ∴tan∠PCA = = 2

          (3) 在平面PAC中作AD⊥PC于D,在平面PAB中作AE⊥PB于連結(jié)DE

          試題詳情

             ∵平面PAC⊥平面PBC,平面PAC∩平面PBC = PC,AD⊥PC

             ∴AD⊥平面PBC

             ∴AD⊥PB

             又∵PB⊥AE  ∴PB⊥面AED

             ∴PB⊥ED

             ∴∠DEA即為二面角A―PB―C的平面角

             在直角三角形PAC中和直角三角形PAB中,

          分別由等面積方法求得

             AD =   AE =

             ∴在直角三角形ADE中可求得:sin∠DEA =

             即二面角A―PB―C的正弦值為.

          試題詳情

          21.(本小題滿分9分)

          在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的10海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北40海里處有一個(gè)雷達(dá)觀測站A,某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)A北偏東30°且與點(diǎn)A相距100海里的位置B,經(jīng)過2小時(shí)又測得該船已行駛到點(diǎn)A北偏東60°且與點(diǎn)A相距20海里的位置C.

          (I)求該船的行駛速度(單位:海里/小時(shí));

          (II)若該船不改變航行方向繼續(xù)行駛.判斷

          它是否會進(jìn)入警戒水域,并說明理由.

          教材(P126.問題)及08年湖南高考理科19題

           

          解:(1)如圖建立平面直角坐標(biāo)系:設(shè)一個(gè)單位為10海里

             則坐標(biāo)平面中AB = 10,AC = 2 A(0,0),E(0, -4)

             再由方位角可求得:B(5,5),C(3,)

             所以|BC| = = 2

             所以BC兩地的距離為20海里

             所以該船行駛的速度為10海里/小時(shí)

             (2)直線BC的斜率為 = 2

             所以直線BC的方程為:y- = 2(x-3)

             即2x-y-5 =0

             所以E點(diǎn)到直線BC的距離為 = < 1

             所以直線BC會與以E為圓心,以一個(gè)單位長為半徑的圓相交,

          所以若該船不改變航行方向則會進(jìn)入警戒水域。

          答:該船行駛的速度為10海里/小時(shí),若該船不改變航行方向則會進(jìn)入警戒水域。

           

           

          試題詳情


          同步練習(xí)冊答案