日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2008年福州市高三第二次質(zhì)檢

          數(shù)學(xué)(理科)試卷

           

          (考試時(shí)間:120分鐘;滿分150分)

           

          注意事項(xiàng):

          1.本科考試分試題卷和答題卷,考生須在答題卷上作答,答題前,請(qǐng)?jiān)诖痤}卷的密封線內(nèi)填寫(xiě)學(xué)校、班級(jí)、學(xué)號(hào)、姓名;

          2.本試卷分為第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,全卷滿分150分,考試時(shí)間120分鐘.

          參考公式:

          如果事件A、B互斥,那么P(A+B)=P(A)+P(B).

          如果事件A、B相互獨(dú)立,那么P(A?B)=P(A)?P(B).

          如果事件A在一次試驗(yàn)中發(fā)生的概率是,那么它在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.

          球的表面積公式,其中R表示球的半徑.

          球的表體積公式,其中R表示球的半徑.

          第Ⅰ卷 (選擇題  共60分)

          一.選擇題(本大題共12小題,每小題5分,共60分. 在每小題所給的四個(gè)答案中有且只有一個(gè)答案是正確的)

          1.若為實(shí)數(shù),則復(fù)數(shù)有可能等于(  ).

          A.     B.       C.        D.

          2.已知集合,,則(    ).

          A.            B.            C.             D.

          3.  函數(shù)的反函數(shù)是( 。.

          A.                B.

          C.                D.

          4. 直角坐標(biāo)系中,,若三角形是直角三角形,則的可能值的個(gè)數(shù)是(  )

              A.1             B.2             C.3             D.4

           

          5. 不等式的解集為,則函數(shù)的圖象大致為(   )

           

           

           

                    A                                 B                         C                              D

          6. 已知首項(xiàng)為正數(shù)的等差數(shù)列滿足: ,,則使其前

          n項(xiàng)和成立的最大自然數(shù)n是( 。.

              A. 4017        B.4014       C. 4016          D.4018

          7. 已知a,b,c為三條不同的直線,且a平面Mb平面N,MN =c .①若a不垂直于c,則a與b一定不垂直;②若a//b,則必有a//c;③若a⊥b,a⊥c則必有MN以上的命題中正確的是(    )

              A.①             B.②             C.③             D.②③

          8. 如果把圓C:x2+y2=1沿向量a=(1,m)平移到,且與直線3x-4y=0相切,則m的值為(    )

          A.2或-      B.2或        C.-2或        D.-2或-

          9. 某電視臺(tái)連續(xù)播放5個(gè)廣告,其中有3個(gè)不同的商業(yè)廣告和2個(gè)不同的奧運(yùn)宣傳廣告,要求最后播放的必須是奧運(yùn)宣傳廣告,且2個(gè)奧運(yùn)宣傳廣告不能連續(xù)播放,則不同的播放方式有           

          A.120種        B.48種           C.36種           D.18種

          10.已知函數(shù)在區(qū)間上至少取得2次最大值,則正整數(shù)的最小值是(    )

            1. 82615980

              11. 已知函數(shù),在區(qū)間上有最小值,則函數(shù)在區(qū)間上一定(    )

              A.有最小值        B.有最大值       C.是減函數(shù)       D.是增函數(shù)

              12. 在平面直角坐標(biāo)系中,,映射平面上的點(diǎn)對(duì)應(yīng)到另一個(gè)平面直角坐標(biāo)系上的點(diǎn),則當(dāng)點(diǎn)沿著折線運(yùn)動(dòng)時(shí),在映射的作用下,動(dòng)點(diǎn)的軌跡是(    )

                         

              A.                 B.                  C.               D.

               

              第Ⅱ卷 (非選擇題 共90分)

              二.填空題(本大題共4小題,每小題4分,共16分,將答案填在題后的橫線上.)

              13. 在平面直角坐標(biāo)系中,不等式組表示的平面區(qū)域面積是      

              試題詳情

              14. 已知的展開(kāi)式中,二項(xiàng)式系數(shù)和為,各項(xiàng)系數(shù)和為,則        

              試題詳情

              15. 一個(gè)四面體的所有棱長(zhǎng)都為,四個(gè)頂點(diǎn)在同一球面上,則此球的表面積為    

              試題詳情

              16. 已知定義在上的函數(shù)滿足,且當(dāng)時(shí),,則的值為        .                      

               

               

              試題詳情

              三、解答題(本大題共6小題,共74分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算過(guò)程)

              17.(本小題滿分12分)

              試題詳情

              已知函數(shù)=2acos2x+bsinxcosx,且f(0)=,f()=.

              試題詳情

              (Ⅰ)求的解析式;

              試題詳情

              (Ⅱ)求的單調(diào)遞增區(qū)間;

              試題詳情

              (Ⅲ)函數(shù)的圖象經(jīng)過(guò)怎樣的平移可使其對(duì)應(yīng)的函數(shù)成為奇函數(shù)?

               

              試題詳情

              18.(本小題滿分12分)

              試題詳情

              三個(gè)人進(jìn)行某項(xiàng)射擊活動(dòng),在一次射擊中甲、乙、丙三人射中目標(biāo)的概率分別為、、.

              (Ⅰ)一次射擊后,三人都射中目標(biāo)的概率是多少?

              試題詳情

              (Ⅱ)用隨機(jī)變量表示三個(gè)人在一次射擊后射中目標(biāo)的次數(shù)與沒(méi)有射中目標(biāo)的次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

               

               

               

              試題詳情

              試題詳情

              19.(本小題滿分12分)

              如圖,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB. D、E分別為棱C1C、B1C1的中點(diǎn).

              試題詳情

                  (Ⅰ)求與平面A1C1CA所成角的大;

                  (Ⅱ)求二面角B―A1D―A的大。

                  (Ⅲ)試在線段AC上確定一點(diǎn)F,使得EF⊥平面A1BD.

               

               

              試題詳情

              20.(本小題滿分12分)

              試題詳情

              數(shù)列的前項(xiàng)和為,滿足關(guān)系: .

              試題詳情

              (Ⅰ)求的通項(xiàng)公式:

              試題詳情

              (Ⅱ)設(shè)計(jì)算.

               

              試題詳情

              21.(本小題滿分12分)

              試題詳情

              已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2,且|PA||PB|sin2θ=2,

              (Ⅰ)求證:動(dòng)點(diǎn)P的軌跡Q是雙曲線;

              試題詳情

              (Ⅱ)過(guò)點(diǎn)B的直線與軌跡Q交于兩點(diǎn)M,N.試問(wèn)軸上是否存在定點(diǎn)C,使為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由.

               

              試題詳情

              22.(本小題滿分14分)

              試題詳情

              已知函數(shù)

              試題詳情

                 (Ⅰ)求函數(shù)的單調(diào)區(qū)間和最小值;

              試題詳情

                 (Ⅱ)當(dāng)(其中e=2.718 28…是自然對(duì)數(shù)的底數(shù));

              試題詳情

                 (Ⅲ)若

               

              2008年福州市高三第二輪質(zhì)檢

              試題詳情

               

              一.選擇題   1-5   6-10   11-12     BBDBC  CBACC  DA

               

              二.填空題   13. 1 ;   14. 2;    15. ;   16.  -1

               

              三、解答題

              17.解:(Ⅰ)由f(0)=,得2a-=,∴2a=,則a=.

              由f()=,得+-=,∴b=1,…………2分

              ∴f(x) =cos2x+sinxcosx -=cos2x+sin2x=sin(2x+).…………4分

              (Ⅱ)由f(x)=sin(2x+).

              又由+2kπ≤2x++2kπ,得+kπ≤x≤+kπ,

              ∴f(x)的單調(diào)遞增區(qū)間是[+kπ,+kπ](k∈Z).?…………8分

              (Ⅲ)∵f(x)=sin2(x+),

              ∴函數(shù)f(x)的圖象右移后對(duì)應(yīng)的函數(shù)可成為奇函數(shù).…………12分

               

              18.解:(I)一次射擊后,三人射中目標(biāo)分別記為事件A1,A2,A3

              由題意知A1,A2,A3互相獨(dú)立,且,…………2分

              .…………4分

              ∴一次射擊后,三人都射中目標(biāo)的概率是.…………5分

              (Ⅱ)證明:一次射擊后,射中目標(biāo)的次數(shù)可能取值為0、1、2、3,相應(yīng)的沒(méi)有射中目標(biāo)的的次數(shù)可能取值為3、2、1、0,所以可能取值為1、3, …………6分

              )+

               ………8分

              ,………10分

              .………12分

              19.解:(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.

                  ∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分

                  ∴與平面A1C1CA所成角,

              .

              與平面A1C1CA所成角為.…………3分

              (Ⅱ)分別延長(zhǎng)AC,A1D交于G. 過(guò)C作CM⊥A1G 于M,連結(jié)BM,

                  ∵BC⊥平面ACC­1A1,∴CM為BM在平面A1C1CA內(nèi)的射影,

                  ∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,………………………5分

                  平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn),

                  ∴CG=2,DC=1 在直角三角形CDG中,,.……7分

                  即二面角B―A1D―A的大小為.……………………8分

              (Ⅲ)取線段AC的中點(diǎn)F,則EF⊥平面A1BD.……………9分

              證明如下:

              ∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,

              ∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,……………10分

              ∵EF在平面A1C1CA內(nèi)的射影為C1F,當(dāng)F為AC的中點(diǎn)時(shí),

              C1F⊥A1D,∴EF⊥A1D.

              同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分

              文本框:  解法二:

              (Ⅰ)同解法一……………………3分

              (Ⅱ)∵A1B1C1―ABC為直三棱柱,C1C=CB=CA=2,

              AC⊥CB,D、E分別為C1C、B1C1的中點(diǎn).

              建立如圖所示的坐標(biāo)系得:

              C(0,0,0),B(2,0,0),A(0,2,0),

              C1(0,0,2), B1(2,0,2), A­1(0,2,2),

              D(0,0,1), E(1,0,2).………………6分

              ,設(shè)平面A1BD的法向量為

                .…………6分

              平面ACC1A1­的法向量為=(1,0,0),.………7分

              即二面角B―A1D―A的大小為.…………………8分

              (Ⅲ)F為AC上的點(diǎn),故可設(shè)其坐標(biāo)為(0,,0),∴.

              由(Ⅱ)知是平面A1BD的一個(gè)法向量,

              欲使EF⊥平面A1BD,當(dāng)且僅當(dāng)//.……10分

              ,∴當(dāng)F為AC的中點(diǎn)時(shí),EF⊥平面A1BD.…………………12分

               

              20.解:(Ⅰ) 據(jù)題意:

              .

                 兩式相減,有:,…………3分

               .…………4分

              又由=解得. …………5分

              是以為首項(xiàng),為公比的等比數(shù)列,∴.…………6分

               (Ⅱ)

               ………8分

              …………12分

               

              21.解: (Ⅰ)依題意,由余弦定理得:

              , ……2分

                

              .

              ,即.  …………4分

              (當(dāng)動(dòng)點(diǎn)與兩定點(diǎn)共線時(shí)也符合上述結(jié)論)

              動(dòng)點(diǎn)的軌跡Q是以為焦點(diǎn),實(shí)軸長(zhǎng)為的雙曲線.其方程為.………6分

              (Ⅱ)假設(shè)存在定點(diǎn),使為常數(shù).

              (1)當(dāng)直線不與軸垂直時(shí),

              設(shè)直線的方程為,代入整理得:

              .…………7分

              由題意知,

              設(shè),,則,.…………8分

              于是,   …………9分

              .…………10分

              要使是與無(wú)關(guān)的常數(shù),當(dāng)且僅當(dāng),此時(shí).…11分

              (2)當(dāng)直線軸垂直時(shí),可得點(diǎn),,

              當(dāng)時(shí),.   

              故在軸上存在定點(diǎn),使為常數(shù).…………12分

               

              22.解:(Ⅰ)………1分

                     

                      同理,令

                      ∴f(x)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.……………………3分

                      由此可知…………………………………………4分

                 (Ⅱ)由(I)可知當(dāng)時(shí),有

                      即.

                  .……………………………………………………………………7分

                (Ⅲ) 設(shè)函數(shù)…………………………………10分

                     

                      ∴函數(shù))上單調(diào)遞增,在上單調(diào)遞減.

                      ∴的最小值為,即總有

                      而

                     

                      即

                      令

                     

                      ……………………………………14分

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>