日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 海 淀 區(qū) 高 三 年 級(jí) 第 一 學(xué) 期 期 末 練 習(xí)

          數(shù)  學(xué)(文科)             2008.1

           

          學(xué)校                班級(jí)               姓名          

           

          題號(hào)

          總分

          (15)

          (16)

          (17)

          (18)

          (19)

          (20)

          分?jǐn)?shù)

           

           

           

           

           

           

           

           

           

                

          一、選擇題:本大題共8小題,每小題5分,共40分.在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng).

          (A)                  (B)-                 (C)                     (D)-

          (2)過兩點(diǎn)(-1,1)和(0,3)的直線在x軸上的截距為                                                (    )

          試題詳情

          (A)-                    (B)                            (C)3                (D)-3

          (3)已知函數(shù)y=log2 x的反函數(shù)是y=f -1(x),那么函數(shù)y=f -1(x)+1的圖象大致是          (    )

          試題詳情

           

           

           

           

           

          試題詳情

          (4)已知向量a=(1-sinθ,1),b=(,1+ sinθ),且ab,則銳角θ等于                            (    )

          (A)30°                 (B)45°                 (C)60°          (D)75°

          試題詳情

          (5)設(shè)m、n是不同的直線,、是不同的平面,有以下四個(gè)命題:

          試題詳情

          ①若, ,則             ②若, m,則m

          試題詳情

          ③若m, m,則                   ④若mnn?,則 m

          其中真命題的序號(hào)是                                                                                     (    )

          (A)①④                 (B)②③                  (C)②④           (D)①③

          (6)在等差數(shù)列{an}中,若a1+a7+a8+a12=12,則此數(shù)列的前13項(xiàng)之和為               (    )

          (A)39                            (B)52                            (C)78                     (D)104

          試題詳情

          (7)已知點(diǎn)A(0,b),B為橢圓+=1(a>b>0)的左準(zhǔn)線與x軸的交點(diǎn),若線段AB的中點(diǎn)C在橢圓上,則該橢圓的離心率為                                                                        (    )

          試題詳情

          (A)                   (B)                  (C)           (D)

          試題詳情

          (8)已知函數(shù)f(x)= -1的定義域是[a,b](a,b,∈Z),值域是[0,1],那么滿足條件

          的整數(shù)數(shù)對(duì)(a,b)共有                                                                                        (    )

          (A)2個(gè)                  (B)3個(gè)                   (C)5個(gè)            (D)無(wú)數(shù)個(gè)

          試題詳情

          二、填空題:本大題共6小題,每小題5分,共30分.請(qǐng)把答案填在題中橫線上.

          (9)雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是          .

          試題詳情

          (10)把函數(shù)y=sin2x的圖象按向量a=(-,0)平移得到的函數(shù)圖象的解析式為        .

          (11)在正方體ABCD-A1B1C1D1中,若M為棱BB1的中點(diǎn),則異面直線B1DAM所成

          角的余弦值是        .

          試題詳情

          (12)已知函數(shù)f(x)=               那么不等式f(x)<0的解集為          .

           

          試題詳情

           

          (13)設(shè)不等式組           所表示的平面區(qū)域?yàn)?i>S,則S的面積為      ;若A,B

           

           

          S內(nèi)的兩個(gè)點(diǎn),則|AB|的最大值為         .

          試題詳情

          (14)平面內(nèi)有四個(gè)點(diǎn),平面內(nèi)有五個(gè)點(diǎn),從這九個(gè)點(diǎn)中任取三點(diǎn),最多可確

                個(gè)平面;任取四點(diǎn)最多可確定         個(gè)四面體.(用數(shù)字作答)

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          (15)(本小題共13分)

          試題詳情

          三、解答題:本大題共6小題,共80.解答應(yīng)寫出文字說明、演算步驟或證明過程.

          已知函數(shù)f(x)=cos2x+2sinxcosx-sin2x

                 (Ⅰ)求f(x)的最小正周期和值域;

          試題詳情

          (Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若f()=2且a2=bc,試判斷

          ABC的形狀.

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          (16) (本小題共13分)

          設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且數(shù)列{Sn}是以2為公比的等比數(shù)列.

          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

          試題詳情

          (Ⅱ)求a1+a3+…+a2n+1.

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          試題詳情

          (17)(本小題共14分)

          如圖,在四棱錐S-ABCD中,底面ABCD是正

          方形,SA⊥底面ABCD,SA=AB,點(diǎn)MSD的中點(diǎn),

          ANSC,且交SC于點(diǎn)N.

          (Ⅰ)求證:SB∥平面ACM;

          (Ⅱ)求二面角D-AC-M的大小;

          (Ⅲ)求證:平面SAC⊥平面AMN.

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          (18)(本小題共12分)

          某城市有30%的家庭訂閱了A報(bào),有60%的家庭訂閱了B報(bào),有20%的家庭同時(shí)訂閱了A報(bào)和B報(bào),從該城市中任取4個(gè)家庭.

          (Ⅰ)求這4個(gè)家庭中恰好有3個(gè)家庭訂閱了A報(bào)的概率;

          (Ⅱ)求這4個(gè)家庭中至多有3個(gè)家庭訂閱了B報(bào)的概率;

          (Ⅲ)求這4個(gè)家庭中恰好有2個(gè)家庭A,B報(bào)都沒有訂閱的概率.

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          (19)(本小題共14分)

          試題詳情

          已知拋物線S的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,△ABC的三個(gè)頂點(diǎn)都在拋物線上,且△ABC的重心為拋物線的焦點(diǎn),若BC所在直線l的方程為4x+y-20=0.

          (Ⅰ)求拋物線S的方程;

          (Ⅱ)若O是坐標(biāo)原點(diǎn),P,Q是拋物線S上的兩個(gè)動(dòng)點(diǎn),且滿足OPOQ.試說明動(dòng)直線PQ是否過定點(diǎn).

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          (20)(本小題共14分)

          已知二次函數(shù)f(x)=ax2+bx的圖象過點(diǎn)(-4n, 0) , f( x)是f(x)的導(dǎo)函數(shù),且

          試題詳情

          f(0)=2n,(nN*).

          (Ⅰ)求a的值;

          試題詳情

          (Ⅱ)若數(shù)列{an}滿足f(),且a1=4,求數(shù)列{an}的通項(xiàng)公式;

          (Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{an},求證a1+a2+a3+…+ak<5(k =1,2,3…).

           

           

          海 淀 區(qū) 高 三 年 級(jí) 第 一 學(xué) 期 期 末 練 習(xí)

          數(shù)   學(xué)(文科)            

           

          試題詳情

          一、              選擇題(本大題共8小題,每小題5分,共40分)

           

          題號(hào)

          (1)

          (2)

          (3)

          (4)

          (5)

          (6)

          (7)

          (8)

          答案

          D

          A

          B

          B

          D

          A

          C

          C

           

          二、填空題(本大題共6小題,每小題5分,有兩空的小題,第一空3分,第二空2分,共30分)

          (9)2    (10)y=sin(2x+ )    (11)     (12)(-∞,-1)∪(-1,1)    (13)16,

          (14)72,120

          三、解答題(本大題共6小題,共80分)

          (15)(共13分)

          解:(Ⅰ)f(x)=cos2x+2sinxcosx-sin2x

          =sin2x+cos2x……………………………………………………4分

          =2sin(2x+)………………………………………………………5分

          T=, f(x)∈[-2,2] ……………………………………………7分

          (Ⅱ)由f()=2,有f()=2sin(A+)=2, ………………………………8分

          ∴sin(A+)=1.

          ∵0<A<,∴A+=,即A=.……………………………………10分

          由余弦定理a2=b2+c2-2bccosAa2=bc,∴(b-c)2=0. ………………12分

          b=c,∴B=C=.

          ∴△ABC為等邊三角形. ……………………………………………13分

          (16)(共13分)

          解:(Ⅰ)∵S1=a1=1,且數(shù)列{Sn}是以2為公比的等比數(shù)列,

          Sn=2n-1.……………………………………………………………2分

          又當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-2(2-1)=2n-2. …………………………5分

          an=          ………………………………………………7分

           

          (Ⅱ)a3,a5,…,a2n+1是以2為首項(xiàng),以4為公比的等比數(shù)列,…………9分

          a3+a5+…+a2n+1=…………………………11分

          a1+a3+…+a2n+1=1+…………………………13分

          (17)(共14分)

          方法一:

          (Ⅰ)證明:連結(jié)BDACE,連結(jié)ME.…………………………………1分

          ABCD是正方形,∴EBD的中點(diǎn).∵MSD的中點(diǎn),∴ME是△DSB的中位線.

          MESB.………………………………………………………………………2分

          又∵ME?平面ACM,SB?平面ACM, ………………………………………3分

          SB∥平面ACM.………………………………………………………………4分

          (Ⅱ)解:取AD中點(diǎn)F,則MFSA.作FQACQ,連結(jié)MQ. ………5分

          SA⊥底面ABCD,∴MF⊥底面ABCD.

          FQMQ在平面ABCD內(nèi)的射影.

          FQAC,

          MQAC.

          ∴∠FQM為二面角D-AC-M的平面角.………………………………………7分

          設(shè)SA=AB=a,在Rt△MFQ中,MF=SA=,FQ=DE=a,

          ∴tanFQM=

          ∴二面角D-AC-M的大小為arctan. ………………………………………9分

          (Ⅲ)證明:由條件有DCSA,DCDA,∴DC⊥平面SAD,∴AMDC.…………10分

          又∵SA=AD,MSD的中點(diǎn),∴AMSD.

          AM⊥平面SDC. ………………………………………………………………11分

          SCAM.

          由已知SCAN,∴SC⊥平面AMN.

          SC?平面SAC,∴平面SAC⊥平面AMN. …………………………………14分

          方法二:

          解:(Ⅱ)如圖,以A為坐標(biāo)原點(diǎn),建立空間直角坐

          標(biāo)系A-xyz, ……………………………5分

          SA=AB,故設(shè)AB=AD=AS=1,則

          A(0,0,0),B(0,1,0),C(1,1,0),

          D(1,0,0),S(0,0,1),M,0,).

          SA⊥底面ABCD,

          是平面ABCD的法向量,

          *=(0,0,1).

           

          設(shè)平面ACM的法向量為n=(x, y, z),

          =(1,1,0), =(),………………………………………………7分

           

                

           

          x=1,則n=(1,-1,-1).  …………………………………………………………8分

          ∴cos<, n>=     =      =

          ∴二面角D-AC-M的大小為arccos.………………………………………9分

          (Ⅲ)∵=(,0,),=(-1,-1,1),…………………………………………10分

          ? = -+=0.

          .…………………………………………………………………………12分

          又∵SCANANAM=A,

          SC⊥平面AMN.又SC平面SAC,

          ∴平面SAC⊥平面AMN.…………………………………………………………14分

          (18)(共12分)

          解:(Ⅰ)設(shè)“這4個(gè)家庭中恰好有3個(gè)家庭訂閱了A報(bào)”的事件為A,………1分

          P(A)=  (0.3)3(0.7)=0.0756 …………………………………………4分

          答:這4個(gè)家庭中恰好有3個(gè)家庭訂閱了A報(bào)的概率為0.0756.

          (Ⅱ)設(shè)“這4個(gè)家庭中至多有3個(gè)家庭訂閱了B報(bào)”的事件為B,………5分

          P(B)=1-(0.6)4=1-0.1296=0.8704…………………………………………8分

          答:這4個(gè)家庭中至多有3個(gè)家庭訂閱了B報(bào)的概率為0.8704.

          (Ⅲ)設(shè)“這4個(gè)家庭中恰好有2個(gè)家庭A,B報(bào)都沒有訂閱”的事件為C, …9分

          因?yàn)橛?0%的家庭訂閱了A報(bào),有60%的家庭訂閱了B報(bào),

          有20%的家庭同時(shí)訂閱了A報(bào)和B報(bào).所以兩份報(bào)紙都沒有訂閱的家庭

          有30%.

          所以P(C)=  (0.3)2(0.7)2=0.2646 …………………………………12分

          答:這4個(gè)家庭中恰好有2個(gè)家庭A,B報(bào)都沒有訂閱的概率為0.2646.

          :第三問若寫出兩份報(bào)紙都沒有訂閱的家庭有30%,后面計(jì)算有誤,給到10分.

          (19)(共14分)

          解:(Ⅰ)設(shè)拋物線S的方程為y2=2px.…………………………………………1分

          可得2y2+py-20p=0.……………………………………3分

          由Δ>0,有p>0,或p<-160.

          設(shè)B(x1,y1),C(x2,y2),則y1+y2=.

          x1+x2=(5-)+(5-)=10- =10+.…………………………5分

          設(shè)A(x3,y3),由△ABC的重心為F,0),則

          x3=

          ∵點(diǎn)A在拋物線S上,∴(2=2p),∴p=8.…………………6分

          ∴拋物線S的方程為y2=16x.……………………………………………………7分

          (Ⅱ)當(dāng)動(dòng)直線PQ的斜率存在時(shí),設(shè)PQ的方程為y=kx+b,顯然k≠0,b≠0.………

          ……………………………………………………………………………………8分

          設(shè)P(xp, yp),Q(xQ, yQ),∵OPOQ,∴kOP?kOQ=-1.

          ?=-1,∴xP xQ + yP yQ=0.  …………………………………………10分

          y=kx+b代入拋物線方程,得ky2-16y+16b=0,∴yPyQ=.

          k≠0,b≠0,∴b=-16k,∴動(dòng)直線方程為y=kx-16k=k(x-16).

          此時(shí)動(dòng)直線PQ過定點(diǎn)(16,0).………………………………………………12分

          當(dāng)直線PQ 的斜率不存在時(shí),顯然PQx軸,又OPOQ,∴△POQ為等腰直角三角形.

          得到P(16,16),Q(16,-16).

          此時(shí)直線PQ亦過點(diǎn)(16,0). …………………………………………………13分

          綜上所述,動(dòng)直線PQ過定點(diǎn)M(16,0). ………………………………………14分

          (20)(共14分)

          解:(Ⅰ)由已知,可得f '(x)=2ax+b,  …………………………………………1分

          解之得a=.…………………………………………3分

          (Ⅱ)∵

          =2×1

          =2×2

          =2×3

          累加得=n2-n(n=2,3…).………………………………………………6分

          an=n=2,3…).

          當(dāng)n=1時(shí),………………………………………………7分

          an=n=1,2,3…).……………………………………………8分

          (Ⅲ)當(dāng)k=1時(shí),由已知a1=4<5顯然成立;………………………………………9分

          當(dāng)k≥2時(shí),ak=<(k2)……………………11分

          a1+a2+a3+…+ak<4+[(1-)+()+…+ ()]=5-<5

          ………………………………………………………………………………13分

          綜上,a1+a2+a3+…+ak<5(k=1,2,3…)成立. ………………………………14分

           

          說明:其他正確解法按相應(yīng)步驟給分.

           


          同步練習(xí)冊(cè)答案