日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 第17講   導(dǎo)數(shù)應(yīng)用的題型與方法

          一、專(zhuān)題綜述

          1.導(dǎo)數(shù)的常規(guī)問(wèn)題:

          (1)刻畫(huà)函數(shù)(比初等方法精確細(xì)微);(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);(3)應(yīng)用問(wèn)題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡(jiǎn)便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問(wèn)題屬于較難類(lèi)型。

          試題詳情

          2.關(guān)于函數(shù)特征,最值問(wèn)題較多,所以有必要專(zhuān)項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡(jiǎn)便。

          試題詳情

          3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問(wèn)題是一種重要類(lèi)型,也是高考中考察綜合能力的一個(gè)方向,應(yīng)引起注意。

          試題詳情

          二、知識(shí)整合

          1.導(dǎo)數(shù)概念的理解.

          試題詳情

          2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問(wèn)題的最大值與最小值.

          復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過(guò)實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來(lái)對(duì)法則進(jìn)行了證明。

          3要能正確求導(dǎo),必須做到以下兩點(diǎn):

          (1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。

          (2)對(duì)于一個(gè)復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對(duì)哪個(gè)變量求導(dǎo)。

          4求復(fù)合函數(shù)的導(dǎo)數(shù),一般按以下三個(gè)步驟進(jìn)行:

          (1)適當(dāng)選定中間變量,正確分解復(fù)合關(guān)系;(2)分步求導(dǎo)(弄清每一步求導(dǎo)是哪個(gè)變量對(duì)哪個(gè)變量求導(dǎo));(3)把中間變量代回原自變量(一般是x)的函數(shù)。

          也就是說(shuō),首先,選定中間變量,分解復(fù)合關(guān)系,說(shuō)明函數(shù)關(guān)系y=f(μ),μ=f(x);然后將已知函數(shù)對(duì)中間變量求導(dǎo),中間變量對(duì)自變量求導(dǎo);最后求,并將中間變量代回為自變量的函數(shù)。整個(gè)過(guò)程可簡(jiǎn)記為分解――求導(dǎo)――回代。熟練以后,可以省略中間過(guò)程。若遇多重復(fù)合,可以相應(yīng)地多次用中間變量。

          試題詳情

          三、例題分析

          例1.   在處可導(dǎo),則            

          思路:   在處可導(dǎo),必連續(xù)          ∴

                  ∴    

          試題詳情

          例2.已知f(x)在x=a處可導(dǎo),且f′(a)=b,求下列極限:

           。1);  (2)

            分析:在導(dǎo)數(shù)定義中,增量△x的形式是多種多樣,但不論△x選擇哪種形式,△y也必須選擇相對(duì)應(yīng)的形式。利用函數(shù)f(x)在處可導(dǎo)的條件,可以將已給定的極限式恒等變形轉(zhuǎn)化為導(dǎo)數(shù)定義的結(jié)構(gòu)形式。

            解:(1)

            

            (2)

            

          說(shuō)明:只有深刻理解概念的本質(zhì),才能靈活應(yīng)用概念解題。解決這類(lèi)問(wèn)題的關(guān)鍵是等價(jià)變形,使極限式轉(zhuǎn)化為導(dǎo)數(shù)定義的結(jié)構(gòu)形式。

          試題詳情

          例3.觀察,,,是否可判斷,可導(dǎo)的奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

          解:若為偶函數(shù)        令

             

                         

          ∴ 可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)

              另證:

          ∴ 可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)

          試題詳情

          例4.(1)求曲線在點(diǎn)(1,1)處的切線方程;

           。2)運(yùn)動(dòng)曲線方程為,求t=3時(shí)的速度。

            分析:根據(jù)導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)的物理意義可知,函數(shù)y=f(x)在處的導(dǎo)數(shù)就是曲線y=f(x)在點(diǎn)處的切線的斜率。瞬時(shí)速度是位移函數(shù)S(t)對(duì)時(shí)間的導(dǎo)數(shù)。

            解:(1),

            ,即曲線在點(diǎn)(1,1)處的切線斜率k=0

            因此曲線在(1,1)處的切線方程為y=1

            (2)

            。

          試題詳情

          例5. 求下列函數(shù)單調(diào)區(qū)間

          (1)      (2)

          (3)                (4)

          解:(1)  時(shí)

             ∴ , 

          (2)   ∴ ,

          (3) 

          ∴      

          ∴ ,   ,

          (4)  定義域?yàn)?/p>

                     

          試題詳情

          例6.求證下列不等式

          (1) 

          (2) 

          (3) 

          證:(1)  

          ∴ 為上    ∴    恒成立

          ∴     

          ∴ 在上  ∴  恒成立

          (2)原式   令     

          ∴    ∴     

                 ∴

          (3)令  

               ∴

          試題詳情

          例7.利用導(dǎo)數(shù)求和:

            (1);

            (2)。

            分析:這兩個(gè)問(wèn)題可分別通過(guò)錯(cuò)位相減法及利用二項(xiàng)式定理來(lái)解決。轉(zhuǎn)換思維角度,由求導(dǎo)公式,可聯(lián)想到它們是另外一個(gè)和式的導(dǎo)數(shù),利用導(dǎo)數(shù)運(yùn)算可使問(wèn)題的解決更加簡(jiǎn)捷。

            解:(1)當(dāng)x=1時(shí),

           ;

            當(dāng)x≠1時(shí),

            ∵,

            兩邊都是關(guān)于x的函數(shù),求導(dǎo)得

            

            即

            (2)∵,

            兩邊都是關(guān)于x的函數(shù),求導(dǎo)得。

            令x=1得

            ,

            即。

          試題詳情

          例8.設(shè),求函數(shù)的單調(diào)區(qū)間.

          分析:本小題主要考查導(dǎo)數(shù)的概念和計(jì)算,應(yīng)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法及推理和運(yùn)算能力.

          解:.

          當(dāng)時(shí)   .

          (i)當(dāng)時(shí),對(duì)所有,有.

          即,此時(shí)在內(nèi)單調(diào)遞增.

          (ii)當(dāng)時(shí),對(duì),有,

          即,此時(shí)在(0,1)內(nèi)單調(diào)遞增,又知函數(shù)在x=1處連續(xù),因此,

          函數(shù)在(0,+)內(nèi)單調(diào)遞增

          (iii)當(dāng)時(shí),令,即.

          解得.

          因此,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間

          內(nèi)也單調(diào)遞增.

          令,解得.

          因此,函數(shù)在區(qū)間內(nèi)單調(diào)遞減.

          試題詳情

           例9.已知拋物線與直線y=x+2相交于A、B兩點(diǎn),過(guò)A、B兩點(diǎn)的切線分別為和。

            (1)求A、B兩點(diǎn)的坐標(biāo); (2)求直線與的夾角。

            分析:理解導(dǎo)數(shù)的幾何意義是解決本例的關(guān)鍵。

            解  (1)由方程組

                解得 A(-2,0),B(3,5)

            (2)由y′=2x,則,。設(shè)兩直線的夾角為θ,根據(jù)兩直線的夾角公式,

                   所以

            說(shuō)明:本例中直線與拋物線的交點(diǎn)處的切線,就是該點(diǎn)處拋物線的切線。注意兩條直線的夾角公式有絕對(duì)值符號(hào)。

          試題詳情

          例10.(2001年天津卷)設(shè),是上的偶函數(shù)。

          (I)求的值;  (II)證明在上是增函數(shù)。

          解:(I)依題意,對(duì)一切有,即,

          ∴對(duì)一切成立,

          由此得到,,    又∵,∴。

          (II)證明:由,得,

          當(dāng)時(shí),有,此時(shí)!嘣谏鲜窃龊瘮(shù)。

          試題詳情

          四、04年高考導(dǎo)數(shù)應(yīng)用題型集錦

          1.(全國(guó)卷10)函數(shù)y=xcosx-sinx在下面哪個(gè)區(qū)間內(nèi)是增函數(shù)(   )

              A ()        B (π,2π)        C ()        D (2π,3π)

          試題詳情

          2.(全國(guó)卷22)(本小題滿(mǎn)分14分)已知函數(shù)f(x)=ln(1+x)-x,g(x)=xlnx,

          試題詳情

          (i)求函數(shù)f(x)的最大值;(ii)設(shè)0<a<b,證明0<g(a)+g(b)-2g()<(b-a)ln2.

          試題詳情

          3.(天津卷9)函數(shù))為增函數(shù)的區(qū)間是

             (A)    (B)    (C)    (D)

          試題詳情

          4.(天津卷20)(本小題滿(mǎn)分12分) 已知函數(shù)在處取得極值。

          (I)討論和是函數(shù)的極大值還是極小值;

          (II)過(guò)點(diǎn)作曲線的切線,求此切線方程。

          (江蘇卷10)函數(shù)在閉區(qū)間[-3,0]上的最大值、最小值分別是  (   )

          (A)1,-1        (B)1,-17       (C)3,-17       (D)9,-19

          (浙江卷11)設(shè)f '(x)是函數(shù)f(x)的導(dǎo)函數(shù),y=f '(x)的圖象

          如右圖所示,則y=f(x)的圖象最有可能的是

           

           

           

           

           

           

           

          (A)               (B)               (C)                (D)

          (浙江卷20)設(shè)曲線y=e-x(x≥0)在點(diǎn)M(t,e-t}處的切線lx軸、y軸圍成的三角形面積為S(t).
          (1)求切線l的方程;(2)求S(t)的最大值。

           

          試題詳情


          同步練習(xí)冊(cè)答案