如入,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D。答案解析
科目:czsx
來源:2011年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)解析版
題型:解答題
如入,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D。
求證:△BEC≌△CDA

查看答案和解析>>
科目:czsx
來源:新疆自治區(qū)中考真題
題型:證明題
如入,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D。
求證:△BEC≌△CDA。
查看答案和解析>>
科目:czsx
來源:
題型:
如入,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D。
求證:△BEC≌△CDA
查看答案和解析>>
科目:czsx
來源:
題型:
如入,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D。求證:△BEC≌△CDA

查看答案和解析>>
科目:czsx
來源:2011年湖北潛江 仙桃 天門 江漢油田中考數(shù)學(xué)卷
題型:解答題
如入,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D。
求證:△BEC≌△CDA
查看答案和解析>>
科目:czsx
來源:
題型:
如入,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D。
求證:△BEC≌△CDA

查看答案和解析>>
科目:czsx
來源:
題型:

25、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm,求BE的長.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE垂足為E,AD⊥CE垂足為D,AD=2.5cm,BE=0.7cm,求DE的長.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
查看答案和解析>>
科目:czsx
來源:
題型:

26、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的長.
查看答案和解析>>
科目:czsx
來源:
題型:閱讀理解

閱讀并填空:
如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.請說明△ADC≌△CEB的理由.
解:∵BE⊥CE于點E(已知),
∴∠E=90°
(垂直的意義)
(垂直的意義)
,
同理∠ADC=90°,
∴∠E=∠ADC(等量代換).
在△ADC中,
∵∠1+∠2+∠ADC=180°
(三角形的內(nèi)角和等于180°)
(三角形的內(nèi)角和等于180°)
,
∴∠1+∠2=90°
(等式的性質(zhì))
(等式的性質(zhì))
.
∵∠ACB=90°(已知),
∴∠3+∠2=90°,
∴
∠1=∠3(同角的余角相等)
∠1=∠3(同角的余角相等)
.
在△ADC和△CEB中,.
∴△ADC≌△CEB (A.A.S)
查看答案和解析>>
科目:czsx
來源:
題型:

18、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E.AD⊥CE于點D.
求證:△BEC≌△CDA.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE垂足為E,AD⊥CE垂足為D,AD=2.5cm,BE=1.7cm,求DE的長.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,
(1)求BE的長.
(2)如果過點C在△ABC外作一條直線l,分別作AD⊥l于D,BE⊥l于E,那么AD、BE、DE之間存在怎樣的數(shù)量關(guān)系?證明你的結(jié)論.(要畫圖)
查看答案和解析>>
科目:czsx
來源:2014屆云南景洪市八年級上學(xué)期期末考試數(shù)學(xué)試卷1(解析版)
題型:解答題
已知,如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.

求證:△BEC≌△CDA.
查看答案和解析>>
科目:czsx
來源:2012-2013學(xué)年云南景洪市第一中學(xué)八年級上學(xué)期期末考試數(shù)學(xué)試卷1(帶解析)
題型:解答題
已知,如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.

求證:△BEC≌△CDA.
查看答案和解析>>
科目:czsx
來源:
題型:解答題
如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的長.
查看答案和解析>>
科目:czsx
來源:
題型:解答題
如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE垂足為E,AD⊥CE垂足為D,AD=2.5cm,BE=1.7cm,求DE的長.
查看答案和解析>>
科目:czsx
來源:
題型:填空題
閱讀并填空:
如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.請說明△ADC≌△CEB的理由.
解:∵BE⊥CE于點E(已知),
∴∠E=90°________,
同理∠ADC=90°,
∴∠E=∠ADC(等量代換).
在△ADC中,
∵∠1+∠2+∠ADC=180°
________,
∴∠1+∠2=90°________.
∵∠ACB=90°(已知),
∴∠3+∠2=90°,
∴________.
在△ADC和△CEB中,.
∴△ADC≌△CEB (A.A.S)
查看答案和解析>>
科目:czsx
來源:烏魯木齊
題型:解答題
如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E.AD⊥CE于點D.
求證:△BEC≌△CDA.
查看答案和解析>>