日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 求證:>-2.5×10-15 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

          (1)求證:P-ABC為正四面體;

          (2)棱PA上是否存在一點M,使得BM與面ABC所成的角為45°?若存在,求出點M的位置;若不存在,請說明理由。

          (3)設棱臺DEF-ABC的體積為V=, 是否存在體積為V且各棱長均相等的平行六面體,使得它與棱臺DEF-ABC有相同的棱長和,并且該平行六面體的一條側棱與底面兩條棱所成的角均為60°? 若存在,請具體構造出這樣的一個平行六面體,并給出證明;若不存在,請說明理由.

           

          查看答案和解析>>

          (本題滿分14分)

          已知四邊形ABCD是正方形,P是平面ABCD外一點,且PA=PB=PC=PD=AB=2,是棱的中點.建立適當?shù)目臻g直角坐標系,利用空間向量方法解答以下問題:

          (1)求證:;

          (2) 求證:

          (3)求直線與直線所成角的余弦值.

          查看答案和解析>>

          有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
          (1)選修4-2:矩陣與變換
          已知點A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉45°”.
          (Ⅰ)寫出矩陣M及其逆矩陣M-1;
          (Ⅱ)請寫出△ABC在矩陣M-1對應的變換作用下所得△A1B1C1的面積.
          (2)選修4-4:坐標系與參數(shù)方程
          過P(2,0)作傾斜角為α的直線l與曲線E:
          x=cosθ
          y=
          2
          2
          sinθ
          (θ為參數(shù))交于A,B兩點.
          (Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
          (Ⅱ)求sinα的取值范圍.
          (3)(選修4-5 不等式證明選講)
          已知正實數(shù)a、b、c滿足條件a+b+c=3,
          (Ⅰ)求證:
          a
          +
          b
          +
          c
          ≤3
          ;
          (Ⅱ)若c=ab,求c的最大值.

          查看答案和解析>>

          本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分
          (1)選修4-2:矩陣與變換
          變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M′(2x,4y).
          (Ⅰ)求變換T的矩陣;
          (Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
          (2)選修4-4:坐標系與參數(shù)方程
          已知極點與原點重合,極軸與x軸的正半軸重合.若曲線C1的極坐標方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
          x=1-
          3
          t
          y=t
          (t為參數(shù)).
          (Ⅰ)求曲線C1的直角坐標方程;
          (Ⅱ)直線?上有一定點P(1,0),曲線C1與?交于M,N兩點,求|PM|.|PN|的值.
          (3)選修4-5:不等式選講
          已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
          1
          4
          b2+
          1
          9
          c2
          +m-1=0.
          (Ⅰ)求證:a2+
          1
          4
          b2+
          1
          9
          c2
          (a+b+c)2
          14

          (Ⅱ)求實數(shù)m的取值范圍.

          查看答案和解析>>

          (2008•普陀區(qū)二模)已知點E,F(xiàn)的坐標分別是(-2,0)、(2,0),直線EP,F(xiàn)P相交于點P,且它們的斜率之積為-
          1
          4

          (1)求證:點P的軌跡在橢圓C:
          x2
          4
          +y2=1
          上;
          (2)設過原點O的直線AB交(1)題中的橢圓C于點A、B,定點M的坐標為(1,
          1
          2
          )
          ,試求△MAB面積的最大值,并求此時直線AB的斜率kAB;
          (3)某同學由(2)題結論為特例作推廣,得到如下猜想:
          設點M(a,b)(ab≠0)為橢圓C:
          x2
          4
          +y2=1
          內一點,過橢圓C中心的直線AB與橢圓分別交于A、B兩點.則當且僅當kOM=-kAB時,△MAB的面積取得最大值.
          問:此猜想是否正確?若正確,試證明之;若不正確,請說明理由.

          查看答案和解析>>


          同步練習冊答案