日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17.(1) 設(shè)0 < x < 2.求函數(shù)f (x) =的最大值, (2) 解不等式1 < | 1 – x2 | < 3. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)0<a<1,函數(shù)f(x)=loga(2ax-2),則使得f(x)<0的x的取值范圍為________.

          查看答案和解析>>

          設(shè)0< x< 1, +的最小值為  (     )

            A.8                B.10               C.1             D.9 

           

          查看答案和解析>>

          (本小題滿分13分)已知函數(shù).

          (1)求函數(shù)的最小正周期和最大值;

          (2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

          (3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

           

          查看答案和解析>>

          (理科10分)在△中,所對的邊分別為,滿足成等差數(shù)列,,求點(diǎn)的軌跡方程.
          (文科10分)設(shè)0<a,b,c<1,求證:(1-a)b,(1-b)c,(1-c)a不同時(shí)大于

          查看答案和解析>>

          已知

          (1)求的單調(diào)區(qū)間;

          (2)證明:當(dāng)時(shí),恒成立;

          (3)任取兩個(gè)不相等的正數(shù),且,若存在使成立,證明:

          【解析】(1)g(x)=lnx+,=        (1’)

          當(dāng)k0時(shí),>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;

          當(dāng)k>0時(shí),>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)

          (2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),的變化情況如表

          x

          1

          (1,e)

          e

          (e,+)

           

          0

          +

          h(x)

          e-2

          0

          所以h(x)0, ∴f(x)2x-e                    (5’)

          設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時(shí),=0所以G(x) 為減函數(shù), 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時(shí), 2x-ef(x)恒成立.

          (3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1      ∴l(xiāng)nx0 –lnx=-1–lnx===(10’)  設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵=

          ∴l(xiāng)nx0 –lnx>0, ∴x0 >x

           

          查看答案和解析>>


          同步練習(xí)冊答案