日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線(xiàn)ab且.則下列判斷正確的是 A. B. C. D. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)y=f(x),若存在x0,使得f(x0)=x0,則稱(chēng)x0是函數(shù)y=f(x)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù)f(x)=ax2+(b+1)x+b-2
          (Ⅰ)當(dāng)a=2,b=1時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
          (Ⅱ)若對(duì)于任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍;
          (Ⅲ)在(Ⅱ)的條件下,若函數(shù)y=f(x)的圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且直線(xiàn)y=kx+
          1a2+1
          是線(xiàn)段AB的垂直平分線(xiàn),求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          (2011•江蘇二模)選答題:本大題共四小題,請(qǐng)從這4題中選作2小題,如果多做,則按所做的前兩題記分.每小題10分,共20分,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.
          A、選修4-1:
          幾何證明選講.如圖,圓O的直徑AB=4,C為圓周上一點(diǎn),BC=2,過(guò)C作圓O的切線(xiàn)l,過(guò)A作l的垂線(xiàn)AD,AD分別與直線(xiàn)l、圓O交于點(diǎn)D,E,求∠DAC的度數(shù)與線(xiàn)段AE的長(zhǎng).
          B、選修4-2:矩陣變換
          求圓C:x2+y2=4在矩陣A=[
          20
          01
          ]的變換作用下的曲線(xiàn)方程.
          C、選修4-4:坐標(biāo)系與參數(shù)方程
          若兩條曲線(xiàn)的極坐標(biāo)方程分別為ρ=1與ρ=2sinθ,它們相交于A、B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).
          D、選修4-5:不等式選講
          已知a、b、c為正數(shù),且滿(mǎn)足acos2θ+bsin2θ<c.求證:
          a
          cos2θ+
          b
          sin2θ<
          c

          查看答案和解析>>

          本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分,如果多做,則按所做的前兩題計(jì)分,作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
          (1)選修4-2:矩陣與變換
          設(shè)矩陣 M=
          a0
          0b
          (其中a>0,b>0).
          (Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
          (Ⅱ)若曲線(xiàn)C:x2+y2=1在矩陣M所對(duì)應(yīng)的線(xiàn)性變換作用下得到曲線(xiàn)C′:
          x2
          4
          +y2=1
          ,求a,b的值.
          (2)(本小題滿(mǎn)分7分)選修4-4:坐標(biāo)系與參數(shù)方程
          在直接坐標(biāo)系xOy中,直線(xiàn)l的方程為x-y+4=0,曲線(xiàn)C的參數(shù)方程為
          x=
          3
          cos∂
          y=sin∂
          (∂為參數(shù))

          (Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
          π
          2
          ),判斷點(diǎn)P與直線(xiàn)l的位置關(guān)系;
          (Ⅱ)設(shè)點(diǎn)Q是曲線(xiàn)C上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)l的距離的最小值.
          (3)(本小題滿(mǎn)分7分)選修4-5:不等式選講
          設(shè)不等式|2x-1|<1的解集為M.
          (Ⅰ)求集合M;
          (Ⅱ)若a,b∈M,試比較ab+1與a+b的大小.

          查看答案和解析>>

          本題包括(1)、(2)、(3)、(4)四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
          若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
          (1)、選修4-1:幾何證明選講
          如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
          (2)選修4-2:矩陣與變換(本小題滿(mǎn)分10分)
          若點(diǎn)A(2,2)在矩陣M=
          cosα-sinα
          sinαcosα
          對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
          (3)選修4-2:矩陣與變換(本小題滿(mǎn)分10分)
          在極坐標(biāo)系中,A為曲線(xiàn)ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線(xiàn)ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
          (4)選修4-5:不等式選講(本小題滿(mǎn)分10分)
          已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

          查看答案和解析>>

          (2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,已知AB,CD是圓O的兩條弦,且AB是線(xiàn)段CD的 垂直平分線(xiàn),若AB=6,CD=2
          5
          ,求線(xiàn)段AC的長(zhǎng)度.
          B.選修4-2:矩陣與變換(本小題滿(mǎn)分10分)
          已知矩陣M=
          21
          1a
          的一個(gè)特征值是3,求直線(xiàn)x-2y-3=0在M作用下的新直線(xiàn)方程.
          C.選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿(mǎn)分10分)
          在平面直角坐標(biāo)系xOy中,已知曲線(xiàn)C的參數(shù)方程是
          x=cosα
          y=sinα+1
          (α是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長(zhǎng)度,建立極坐標(biāo)系,求曲線(xiàn)C的極坐標(biāo)方程.
          D.選修4-5:不等式選講(本小題滿(mǎn)分10分)
          已知關(guān)于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實(shí)數(shù)a的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案