日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知S(x)=.則g(x)=∣S(x)∣+S(∣x∣)的值域?yàn)? . 查看更多

           

          題目列表(包括答案和解析)

           已知S(x)=,則g(x)=∣S(x)∣+S(∣x∣)的值域?yàn)?u>               .

           

          查看答案和解析>>

          已知S(x)=,則函數(shù)g(x)=S(|x|)+|S(x)|的值域?yàn)開(kāi)_______.

          查看答案和解析>>

          已知函數(shù)f(x)=ax+bsinx,當(dāng)數(shù)學(xué)公式時(shí),f(x)取得極小值數(shù)學(xué)公式
          (1)求a,b的值;
          (2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
          ①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
          ②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
          試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
          (3)記數(shù)學(xué)公式,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=ax+bsinx,當(dāng)時(shí),f(x)取得極小值
          (1)求a,b的值;
          (2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
          ①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
          ②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
          試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
          (3)記,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
          π
          3
          時(shí),f(x)取得極小值
          π
          3
          -
          3

          (1)求a,b的值;
          (2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
          ①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
          ②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
          試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
          (3)記h(x)=
          1
          8
          [5x-f(x)]
          ,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說(shuō)明理由.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案