題目列表(包括答案和解析)
解:能否投中,那得看拋物線與籃圈所在直線是否有交點(diǎn)。因為函數(shù)的零點(diǎn)是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。
某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車費(fèi)若行駛路程超出4km,則按每超出lkm加收2元計費(fèi)(超出不足1km的部分按lkm計).從這個城市的民航機(jī)場到某賓館的路程為15km.某司機(jī)常駕車在機(jī)場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉(zhuǎn)換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費(fèi)),這個司機(jī)一次接送旅客的行車路程ξ是一個隨機(jī)變量,
(1)他收旅客的租車費(fèi)η是否也是一個隨機(jī)變量?如果是,找出租車費(fèi)η與行車路程ξ的關(guān)系式;
(2)已知某旅客實付租車費(fèi)38元,而出租汽車實際行駛了15km,問出租車在途中因故停車?yán)塾嬜疃鄮追昼?這種情況下,停車?yán)塾嫊r間是否也是一個隨機(jī)變量?
已知點(diǎn)(
),過點(diǎn)
作拋物線
的切線,切點(diǎn)分別為
、
(其中
).
(Ⅰ)若,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線的方程是
,且以點(diǎn)
為圓心的圓
與直線
相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。
中∵直線與曲線
相切,且過點(diǎn)
,∴
,利用求根公式得到結(jié)論先求直線
的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
,借助于函數(shù)的性質(zhì)圓
面積的最小值
(Ⅰ)由可得,
. ------1分
∵直線與曲線
相切,且過點(diǎn)
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,則
的斜率
,
∴直線的方程為:
,又
,
∴,即
. -----------------7分
∵點(diǎn)到直線
的距離即為圓
的半徑,即
,--------------8分
故圓的面積為
. --------------------9分
(Ⅲ)∵直線的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
, ………10分
∴
,
當(dāng)且僅當(dāng),即
,
時取等號.
故圓面積的最小值
.
已知函數(shù) R).
(Ⅰ)若 ,求曲線
在點(diǎn)
處的的切線方程;
(Ⅱ)若 對任意
恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問中,利用當(dāng)時,
.
因為切點(diǎn)為(
),
則
,
所以在點(diǎn)()處的曲線的切線方程為:
第二問中,由題意得,即
即可。
Ⅰ)當(dāng)時,
.
,
因為切點(diǎn)為(),
則
,
所以在點(diǎn)()處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以
恒成立,
故在
上單調(diào)遞增,
……12分
要使恒成立,則
,解得
.……15分
解法二:
……7分
(1)當(dāng)時,
在
上恒成立,
故在
上單調(diào)遞增,
即
.
……10分
(2)當(dāng)時,令
,對稱軸
,
則在
上單調(diào)遞增,又
① 當(dāng),即
時,
在
上恒成立,
所以在
單調(diào)遞增,
即
,不合題意,舍去
②當(dāng)時,
,
不合題意,舍去 14分
綜上所述:
已知曲線上動點(diǎn)
到定點(diǎn)
與定直線
的距離之比為常數(shù)
.
(1)求曲線的軌跡方程;
(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點(diǎn)
為圓心作圓
:
,設(shè)圓
與曲線
交于點(diǎn)
與點(diǎn)
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點(diǎn)作直線
的垂線,垂足為D.
代入坐標(biāo)得到
第二問當(dāng)斜率k不存在時,檢驗得不符合要求;
當(dāng)直線l的斜率為k時,;,化簡得
第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對稱,設(shè),, 不妨設(shè)
.
由于點(diǎn)M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)
時,
取得最小值為
.
計算得,,故
,又點(diǎn)
在圓
上,代入圓的方程得到
.
故圓T的方程為:
已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓
的離心率為
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(diǎn)(2,1)的直線
與橢圓
相交于不同的兩點(diǎn)
,滿足
?若存在,求出直線
的方程;若不存在,請說明理由.
【解析】第一問利用設(shè)橢圓的方程為
,由題意得
解得
第二問若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因為直線與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以
所以.解得。
解:⑴設(shè)橢圓的方程為
,由題意得
解得,故橢圓
的方程為
.……………………4分
⑵若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因為直線與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以
所以.
又,
因為,即
,
所以.
即.
所以,解得
.
因為A,B為不同的兩點(diǎn),所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com