日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16.解:(Ⅰ)由得點(diǎn). 又由已知得. 故 . . 查看更多

           

          題目列表(包括答案和解析)

          解:能否投中,那得看拋物線與籃圈所在直線是否有交點(diǎn)。因為函數(shù)的零點(diǎn)是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。

          某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車費(fèi)若行駛路程超出4km,則按每超出lkm加收2元計費(fèi)(超出不足1km的部分按lkm計).從這個城市的民航機(jī)場到某賓館的路程為15km.某司機(jī)常駕車在機(jī)場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉(zhuǎn)換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費(fèi)),這個司機(jī)一次接送旅客的行車路程ξ是一個隨機(jī)變量,

          (1)他收旅客的租車費(fèi)η是否也是一個隨機(jī)變量?如果是,找出租車費(fèi)η與行車路程ξ的關(guān)系式;

          (2)已知某旅客實付租車費(fèi)38元,而出租汽車實際行駛了15km,問出租車在途中因故停車?yán)塾嬜疃鄮追昼?這種情況下,停車?yán)塾嫊r間是否也是一個隨機(jī)變量?

          查看答案和解析>>

          已知點(diǎn)),過點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).

          (Ⅰ)若,求的值;

          (Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

          (Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

          求圓面積的最小值.

          【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

          中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

          (3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

          (Ⅰ)由可得,.  ------1分

          ∵直線與曲線相切,且過點(diǎn),∴,即,

          ,或, --------------------3分

          同理可得:,或----------------4分

          ,∴. -----------------5分

          (Ⅱ)由(Ⅰ)知,,,則的斜率

          ∴直線的方程為:,又,

          ,即. -----------------7分

          ∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

          故圓的面積為. --------------------9分

          (Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

          ,

          當(dāng)且僅當(dāng),即時取等號.

          故圓面積的最小值

           

          查看答案和解析>>

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

          (Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

          第一問中,利用當(dāng)時,

          因為切點(diǎn)為(), 則,                 

          所以在點(diǎn)()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當(dāng)時,

          ,                                  

          因為切點(diǎn)為(), 則,                  

          所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因為,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當(dāng)時,上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當(dāng)時,令,對稱軸,

          上單調(diào)遞增,又    

          ① 當(dāng),即時,上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當(dāng)時,, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>

          已知曲線上動點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù)

          (1)求曲線的軌跡方程;

          (2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;

          (3)以曲線的左頂點(diǎn)為圓心作圓,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時圓的方程.

          【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.

          代入坐標(biāo)得到

          第二問當(dāng)斜率k不存在時,檢驗得不符合要求;

          當(dāng)直線l的斜率為k時,;,化簡得

          第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對稱,設(shè),, 不妨設(shè)

          由于點(diǎn)M在橢圓C上,所以

          由已知,則

          ,

          由于,故當(dāng)時,取得最小值為

          計算得,,故,又點(diǎn)在圓上,代入圓的方程得到.  

          故圓T的方程為:

           

          查看答案和解析>>

          已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請說明理由.

          【解析】第一問利用設(shè)橢圓的方程為,由題意得

          解得

          第二問若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

          所以

          所以.解得。

          解:⑴設(shè)橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,

          所以

          所以

          因為,即

          所以

          所以,解得

          因為A,B為不同的兩點(diǎn),所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>


          同步練習(xí)冊答案