日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓的焦點(diǎn)分別為.右準(zhǔn)線交軸于點(diǎn)A.且. (Ⅰ)試求橢圓的方程, (Ⅱ)過.分別作互相垂直的兩直線與橢圓分別交于D.E. M.N四點(diǎn).試求四邊形DMEN面積的最大值和最小值. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分) 

          設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,在軸負(fù)半軸上

          有一點(diǎn),滿足,且.

             (1)求橢圓的離心率;

             (2)若過三點(diǎn)的圓恰好與直線相切,求橢圓的方程;

             (3)在(2)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由。  

           

           

          查看答案和解析>>

          (本小題滿分14分)

          設(shè)橢圓方程為拋物線方程為如圖4所示,過點(diǎn)軸的平行線,與拋物線在第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)過橢圓的右焦點(diǎn)

                 (1)求滿足條件的橢圓方程和拋物線方程;

                 (2)設(shè)AB分別是橢圓長軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)) 。

          查看答案和解析>>

          (本小題滿分14分)設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

           

          1)求的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率;

          2)設(shè)直線與橢圓交于不同的兩點(diǎn),且(其中坐標(biāo)原點(diǎn)),請(qǐng)問是否存在這樣的直線過拋物線的焦點(diǎn)若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

           

          查看答案和解析>>

          (本小題滿分14分)

          設(shè)橢圓方程為拋物線方程為如圖4所示,過點(diǎn)軸的平行線,與拋物線在第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)過橢圓的右焦點(diǎn)

                 (1)求滿足條件的橢圓方程和拋物線方程;

                 (2)設(shè)A,B分別是橢圓長軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)) 。

           

          查看答案和解析>>

          (本小題滿分14分)設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:













           
          1)求,的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率
          2)設(shè)直線與橢圓交于不同的兩點(diǎn),且(其中坐標(biāo)原點(diǎn)),請(qǐng)問是否存在這樣的直線過拋物線的焦點(diǎn)若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案