日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16.(1)解:∵.∴a = (1.).b = (.) 2分 由a = 2b.得.∴(k ÎZ) 6分 (2)解:∵a·b = 2cos2 = 8分 ∴.即 10分 整理得.∵.∴. 12分 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).

          (1)求函數(shù)f(x)的表達(dá)式;

          (2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;

          (3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

          【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

          由f(x)=2x只有一解,即=2x,

          也就是2ax2-2(1+b)x=0(a≠0)只有一解,

          ∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

          (2)an+1=f(an)=(n∈N*),bn-1, ∴,

          ∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=,

          bn=b1qn-1n-1n(n∈N*).……………………………9分

          (3)證明:∵anbn=an=1-an=1-,

          ∴a1b1+a2b2+…+anbn+…+<+…+

          =1-<1(n∈N*).

           

          查看答案和解析>>

          定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3,},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
          (1)將“特征數(shù)”是{0,
          3
          3
          ,1
          }的函數(shù)圖象向下平移2個(gè)單位,得到的新函數(shù)的解析式是
          y=
          3
          3
          x-1
          y=
          3
          3
          x-1
          ; (答案寫在答卷上)
          (2)在(1)中,平移前后的兩個(gè)函數(shù)分別與y軸交于A、B兩點(diǎn),與直線x=
          3
          分別交于D、C兩點(diǎn),在平面直角坐標(biāo)系中畫出圖形,判斷以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形形狀,并說(shuō)明理由;
          (3)若(2)中的四邊形與“特征數(shù)”是{1,-2b,b2+
          1
          2
          }的函數(shù)圖象的有交點(diǎn),求滿足條件的實(shí)數(shù)b的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案