日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21.設(shè)的定義域?yàn)?且滿足..有.當(dāng)時.. (1)求的值, (2)證明在上是增函數(shù), (3)解不等式. 查看更多

           

          題目列表(包括答案和解析)

          (本小題14分)

          設(shè)函數(shù)yf(x)的定義域?yàn)?0,+∞),且在(0,+∞)上單調(diào)遞增,若對任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,數(shù)列{an}滿足:a1f(1)+1,

          (1)求數(shù)列{an}的通項(xiàng)公式,并求Sn關(guān)于n的表達(dá)式;

          (2)設(shè)函數(shù)g(x)對任意x、y都有:g(xy)=g(x)+g(y)+2xy,若g(1)=1,正項(xiàng)數(shù)列{bn}滿足:,Tn為數(shù)列{bn}的前n項(xiàng)和,試比較4SnTn的大小。

          查看答案和解析>>


          (本小題滿分14分)
          已知函數(shù),當(dāng)時,取得極小值.
          (1)求,的值;
          (2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:
          ①直線與曲線相切且至少有兩個切點(diǎn);
          ②對任意都有.則稱直線為曲線的“上夾線”.
          試證明:直線是曲線的“上夾線”.
          (3)記,設(shè)是方程的實(shí)數(shù)根,若對于定義域中任意的,當(dāng),且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.

          查看答案和解析>>

           

          (本小題滿分14分)

          已知函數(shù),當(dāng)時,取得極小值.

          (1)求,的值;

          (2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:

          ①直線與曲線相切且至少有兩個切點(diǎn);

          ②對任意都有.則稱直線為曲線的“上夾線”.

          試證明:直線是曲線的“上夾線”.

          (3)記,設(shè)是方程的實(shí)數(shù)根,若對于定義域中任意的、,當(dāng),且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.

           

          查看答案和解析>>

          (本小題滿分14分)

          已知函數(shù),當(dāng)時,取得極小值.

          (1)求,的值;

          (2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:

          ①直線與曲線相切且至少有兩個切點(diǎn);

          ②對任意都有.則稱直線為曲線的“上夾線”.

          試證明:直線是曲線的“上夾線”.

          (3)記,設(shè)是方程的實(shí)數(shù)根,若對于定義域中任意的,當(dāng),且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.

          查看答案和解析>>


          (本小題滿分14分)
          已知函數(shù),當(dāng)時,取得極小值.
          (1)求的值;
          (2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:
          ①直線與曲線相切且至少有兩個切點(diǎn);
          ②對任意都有.則稱直線為曲線的“上夾線”.
          試證明:直線是曲線的“上夾線”.
          (3)記,設(shè)是方程的實(shí)數(shù)根,若對于定義域中任意的,當(dāng),且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.

          查看答案和解析>>


          同步練習(xí)冊答案