日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22.已知函數:. (1)當的定義域為時.求證:的值域為, (2)設函數.求的最小值 . 解:(1)證明:. 當.... ∴. 即的值域為. ------4分 (2) ①當. 如果 即時.則函數在上單調遞增. ∴ , ------6分 如果, 當時.最小值不存在. --------8分 ②當. 如果, --------10分 如果 --------12分 當. . -------13分 綜合得:當時. g(x)最小值是,當時. g(x)最小值是 ,當時. g(x)最小值為,當時. g(x)最小值不存在. -------14分 查看更多

           

          題目列表(包括答案和解析)

          (本小題共14分)已知是由滿足下述條件的函數構成的集合:對任意,①方程有實數根;②函數的導數滿足

          (Ⅰ)判斷函數是否是集合中的元素,并說明理由;

          (Ⅱ)集合中的元素具有下面的性質:若的定義域為,則對于任意,都存在,使得等式成立.試用這一性質證明:方程有且只有一個實數根;

          (Ⅲ)對任意,且,求證:對于定義域中任意的,,當,且時,.

           

          查看答案和解析>>

          (本小題滿分14分) 對函數Φx),定義fkx)=Φxmk)+nk(其中x∈(mk,

          mmk],kZ,m>0,n>0,且m、n為常數)為Φx)的第k階階梯函數,m叫做階寬,n叫做階高,已知階寬為2,階高為3.

             (1)當Φx)=2x時  ①求f0x)和fkx)的解析式;  ②求證:Φx)的各階階梯函數圖象的最高點共線;

            

           

          查看答案和解析>>

          (本小題滿分14分) 對函數Φx),定義fkx)=Φxmk)+nk(其中x∈(mk,

          mmk],kZm>0,n>0,且mn為常數)為Φx)的第k階階梯函數,m叫做階寬,n叫做階高,已知階寬為2,階高為3.

          (1)當Φx)=2x時  ①求f0x)和fkx)的解析式;  ②求證:Φx)的各階階梯函數圖象的最高點共線;

          (2)若Φx)=x2,則是否存在正整數k,使得不等式fkx)<(1-3kx+4k2+3k-1有解?若存在,求出k的值;若不存在,請說明理由.

           

          查看答案和解析>>

          (本小題滿分14分)
          對函Φx),定義fkx)=Φxmk)+nk(其中x∈(mk
          mmk],kZ,m>0,n>0,且m、n為常數)為Φx)的第k階階梯函數,m叫做階寬,n叫做階高,已知階寬為2,階高為3.
          (1)當Φx)=2x時  ①求f0x)和fkx的解析式;  ②求證:Φx)的各階階梯函數圖象的最高點共線;

          查看答案和解析>>

          (本小題滿分14分)
          對函Φx),定義fkx)=Φxmk)+nk(其中x∈(mk,
          mmk],kZ,m>0,n>0,且m、n為常數)為Φx)的第k階階梯函數,m叫做階寬,n叫做階高,已知階寬為2,階高為3.
          (1)當Φx)=2x時  ①求f0x)和fkx的解析式;  ②求證:Φx)的各階階梯函數圖象的最高點共線;

          查看答案和解析>>


          同步練習冊答案