日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 8.果函數(shù)f(x)在區(qū)間D上滿足.對區(qū)間D上的任意x1,x2,-,xn,有:則稱f(x)在區(qū)間D為凸函數(shù).已知y =sinx在區(qū)間(0.)上是凸函數(shù).那么在ΔABC中.sinA+sinB+sinC的最大值為 A. B. C. D. 查看更多

           

          題目列表(包括答案和解析)

          如果函數(shù)f(x)滿足:對于區(qū)間D內(nèi)的任意x1,x2,L,xn,有[f(x1)+f(x2)+L+f(xn)]≤f()?成立,那么稱f(x)為凸函數(shù).已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值是(  )

          A.         B.        C.        D.

          查看答案和解析>>

          已知函數(shù)y=f(x)在區(qū)間[a,b]上均有意義,且A、B是其圖象上橫坐標分別為a、b的兩點.對應(yīng)于區(qū)間[0,1]內(nèi)的實數(shù)λ,取函數(shù)y=f(x)的圖象上橫坐標為x=λa+(1-λ)b的點M,和坐標平面上滿足=λ+(1-λ)的點N,得.對于實數(shù)k,如果不等式||≤k對λ∈[0,1]恒成立,那么就稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2+x在[1,2]上“k階線性近似”,則實數(shù)k的取值范圍為

          [  ]
          A.

          B.[0,+∞)

          C.[,+∞)

          D.[,+∞)

          查看答案和解析>>

          若函數(shù)y=f(x)(x∈D)同時滿足以下條件:①它在定義域D上是單調(diào)函數(shù);②存在區(qū)間[a,b]D,使得f(x)在區(qū)間[a,b]上的值域是[a,b],我們將這樣的函數(shù)稱為閉函數(shù).

          (1)對于函數(shù))y=f(x)=lg(x2-3x+2),x∈[3,5],則y=f(x)____________(填“是”或者“不是”)閉函

          數(shù);

          (2)對于函數(shù)y=k+,如果它是一個閉函數(shù),則常數(shù)k的取值范圍是_____________.

          查看答案和解析>>

          已知函數(shù)y=f(x)在區(qū)間[a,b]上均有意義,且A、B是其圖象上橫坐標分別為a、b的兩點.對應(yīng)于區(qū)間[0,1]內(nèi)的實數(shù)λ,取函數(shù)y=f(x)的圖象上橫坐標為x=λa+(1-λ)b的點M,和坐標平面上滿足的點N,得.對于實數(shù)k,如果不等式|MN|≤k對λ∈[0,1]恒成立,那么就稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2+x在[1,2]上“k階線性近似”,則實數(shù)k的取值范圍為( )
          A.
          B.[0,+∞)
          C.
          D.

          查看答案和解析>>

          已知函數(shù)y=f(x)在區(qū)間[a,b]上均有意義,且A、B是其圖象上橫坐標分別為a、b的兩點.對應(yīng)于區(qū)間[0,1]內(nèi)的實數(shù)λ,取函數(shù)y=f(x)的圖象上橫坐標為x=λa+(1-λ)b的點M,和坐標平面上滿足數(shù)學公式的點N,得數(shù)學公式.對于實數(shù)k,如果不等式|MN|≤k對λ∈[0,1]恒成立,那么就稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2+x在[1,2]上“k階線性近似”,則實數(shù)k的取值范圍為


          1. A.
            數(shù)學公式
          2. B.
            [0,+∞)
          3. C.
            數(shù)學公式
          4. D.
            數(shù)學公式

          查看答案和解析>>


          同步練習冊答案