日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知不等式 (1)解此不等式, (2)若在不等式的解中.求的范圍. 查看更多

           

          題目列表(包括答案和解析)

            已知  設(shè)P:函數(shù)在R上單調(diào)遞減;  Q:不等式的解集為R,若“PQ”是真命題,“PQ”是假命題,求的取值范圍.

          [解題思路]:“PQ”是真命題,“PQ”是假命題,根據(jù)真假表知,PQ之中一真一假,因此有兩種情況,要分類討論.

          查看答案和解析>>

          已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.

          (1)   求常數(shù)的值和數(shù)列的通項(xiàng)公式;

          (2)   若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來的順序組成一個(gè)新的數(shù)列,試寫出數(shù)列的通項(xiàng)公式;

          (3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請說明理由.

          【解析】第一問中解:由,,

          又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,

          ,所以p=1

          故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.

          此時(shí)也滿足,則所求常數(shù)的值為1且

          第二問中,解:由等比數(shù)列的性質(zhì)得:

          (i)當(dāng)時(shí),;

          (ii) 當(dāng)時(shí),

          所以

          第三問假設(shè)存在正整數(shù)n滿足條件,則,

          則(i)當(dāng)時(shí),

          ,

           

          查看答案和解析>>

          已知函數(shù)時(shí)都取得極值.

          (1)求的值及函數(shù)的單調(diào)區(qū)間;www.7caiedu.cn     

          (2)若對,不等式恒成立,求的取值范圍.

          【解析】根據(jù)的兩個(gè)根,可求出a,b的值,然后利用導(dǎo)數(shù)確定其單調(diào)區(qū)間即可.

          (2)此題本質(zhì)是利用導(dǎo)數(shù)其函數(shù)f(x)在區(qū)間[-1,2]上的最大值,然后利用,即可解出c的取值范圍.

           

          查看答案和解析>>

          已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

          【解析】第一問中,當(dāng)時(shí),,.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。

          第二問中,∵,,      

          ∴原不等式等價(jià)于:,

          , 亦即

          分離參數(shù)的思想求解參數(shù)的范圍

          解:(Ⅰ)當(dāng)時(shí),,

          當(dāng)上變化時(shí),,的變化情況如下表:

           

           

          1/e

          時(shí),,

          (Ⅱ)∵,,      

          ∴原不等式等價(jià)于:,

          , 亦即

          ∴對于任意的,原不等式恒成立,等價(jià)于恒成立,

          ∵對于任意的時(shí), (當(dāng)且僅當(dāng)時(shí)取等號(hào)).

          ∴只需,即,解之得.

          因此,的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)數(shù)學(xué)公式,且此函數(shù)圖象過點(diǎn)(1,5)
          (1)求實(shí)數(shù)m的值并判斷f(x)的奇偶性;
          (2)若函數(shù)f(x)在(0,2)上單調(diào)遞減,解關(guān)于實(shí)數(shù)x的不等式數(shù)學(xué)公式

          查看答案和解析>>


          同步練習(xí)冊答案