日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 依題意可知 ..故選C. 查看更多

           

          題目列表(包括答案和解析)

          (2012•甘肅一模)(文科)某中學高一年級美術(shù)學科開設書法、繪畫、雕塑三門校本選修課,學生可選也可不選,學生是否選修哪門課互不影響.已知某學生只選修書法的概率為0.08,只選修書法和繪畫的概率是0.12,至少選修一門的概率是0.88.
          (1)依題意分別計算該學生選修書法、繪畫、雕塑三門校本選修課的概率;
          (2)用a表示該學生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,記“f(x)=x2+ax為R上的偶函數(shù)”為事件A,求事件A發(fā)生的概率.

          查看答案和解析>>

          (2012•甘肅一模)(理科)某中學高一年級美術(shù)學科開設書法、繪畫、雕塑三門校本選修課,學生可選也可不選,學生是否選修哪門課互不影響.已知某學生只選修書法的概率為0.08,只選修書法和繪畫的概率是0.12,至少選修一門的概率是0.88.
          (1)依題意分別計算該學生選修書法、繪畫、雕塑三門校本選修課的概率;
          (2)用ξ表示該學生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,求隨機變量ξ的分布列和數(shù)學期望.

          查看答案和解析>>

          某廠制造A種電子裝置45臺,B種電子裝置55臺,為了給每臺裝置裝配一個外殼,要從兩種不同規(guī)格的薄鋼板上截取.已知甲種薄鋼板每張面積為2m2,可做A種外殼3個和B種外殼5個;乙種薄鋼板每張面積為3m2,可做A種和B種外殼各6個,用這兩種薄鋼板各多少張,才能使總的用料面積最小?(請根據(jù)題意,在下面的橫線處按要求填上恰當?shù)年P(guān)系式或數(shù)值)
          解:設用甲、乙兩種薄鋼板各x張,y張,
          則可做A種外殼
          3x+6y
          3x+6y
          個,B種外殼
          5x+6y
          5x+6y
          個,所用鋼板的總面積為z=
          2x+3y
          2x+3y
          (m2)依題得線性約束條件為:
          3x+6y≥45
          5x+6y≥55
          x≥0
          y≥0
          ,(x,y∈N)
          3x+6y≥45
          5x+6y≥55
          x≥0
          y≥0
          ,(x,y∈N)
          作出線性約束條件對應的平面區(qū)域如圖(用陰影表示)依圖可知,目標函數(shù)取得最小值的點為
          (5,5)
          (5,5)
          ,且最小值zmin=
          25
          25
          (m2

          查看答案和解析>>

          在本次數(shù)學期中考試試卷中共有10道選擇題,每道選擇題有4個選項,其中只有一個是正確的。評分標準規(guī)定:“每題只選一項,答對得5分,不答或答錯得0分”.某考生每道題都給出一個答案, 且已確定有7道題的答案是正確的,而其余題中,有1道題可判斷出兩個選項是錯誤的,有一道可以判斷出一個選項是錯誤的,還有一道因不了解題意只能亂猜。試求出該考生:

          (1)選擇題得滿分(50分)的概率;

          (2)選擇題所得分數(shù)的數(shù)學期望。

          【解析】第一問總利用獨立事件的概率乘法公式得分為50分,10道題必須全做對.在其余的3道題中,有1道題答對的概率為,有1道題答對的概率為,還有1道答對的概率為

          所以得分為50分的概率為:

          第二問中,依題意,該考生得分的范圍為{35,40,45,50}         

          得分為35分表示只做對了7道題,其余各題都做錯,

          所以概率為                            

          得分為40分的概率為: 

          同理求得,得分為45分的概率為: 

          得分為50分的概率為:

          得到分布列和期望值。

          解:(1)得分為50分,10道題必須全做對.在其余的3道題中,有1道題答對的概率為,有1道題答對的概率為,還有1道答對的概率為,

          所以得分為50分的概率為:                   …………5分

          (2)依題意,該考生得分的范圍為{35,40,45,50}            …………6分

          得分為35分表示只做對了7道題,其余各題都做錯,

          所以概率為                              …………7分

          得分為40分的概率為:     …………8分

          同理求得,得分為45分的概率為:                     …………9分

          得分為50分的概率為:                      …………10分

          所以得分的分布列為

          35

          40

          45

          50

           

          數(shù)學期望

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得于是,所以

          (2) ,設平面PCD的法向量,

          ,即.不防設,可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設點E的坐標為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>


          同步練習冊答案