日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ) 證明:據題意且x1<x2<x3, 查看更多

           

          題目列表(包括答案和解析)

          (1)若橢圓的方程是:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),它的左、右焦點依次為F1、F2,P是橢圓上異于長軸端點的任意一點.在此條件下我們可以提出這樣一個問題:“設△PF1F2的過P角的外角平分線為l,自焦點F2引l的垂線,垂足為Q,試求Q點的軌跡方程?”
          對該問題某同學給出了一個正確的求解,但部分解答過程因作業(yè)本受潮模糊了,我們在
          精英家教網
          這些模糊地方劃了線,請你將它補充完整.
          解:延長F2Q 交F1P的延長線于E,據題意,
          E與F2關于l對稱,所以|PE|=|PF2|.
          所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
           
          ,
          在△EF1F2中,顯然OQ是平行于EF1的中位線,
          所以|OQ|=
          1
          2
          |EF1|=
           
          ,
          注意到P是橢圓上異于長軸端點的點,所以Q點的軌跡是
           
          ,
          其方程是:
           

          (2)如圖2,雙曲線的方程是:
          x2
          a2
          -
          y2
          b2
          =1(a,b>0),它的左、右焦點依次為F1、F2,P是雙曲線上異于實軸端點的任意一點.請你試著提出與(1)類似的問題,并加以證明.

          查看答案和解析>>

          袋子中裝有大小形狀完全相同的m個紅球和n個白球,其中m,n滿足m>n≥2且m+n≤l0(m,n∈N+),若從中取出2個球,取出的2個球是同色的概率等于取出的2個球是異色的概率.

          (Ⅰ) 求m,n的值;

          (Ⅱ) 從袋子中任取3個球,設取到紅球的個數為,求的分布列與數學期望.

          【解析】第一問中利用,解得m=6,n=3.

          第二問中,的取值為0,1,2,3. P(=0)= ,     P(=1)=

          P(=2)= ,   P(=3)=

          得到分布列和期望值

          解:(I)據題意得到        解得m=6,n=3.

          (II)的取值為0,1,2,3.

          P(=0)= ,     P(=1)=

          P(=2)= ,   P(=3)=

          的分布列為

          所以E=2

           

          查看答案和解析>>

          據某城市2002年末所作的統(tǒng)計資料顯示,到2002年末,該城市堆積的垃圾已達50萬噸,侵占了大量的土地,并且成為造成環(huán)境污染的因素之一.根據預測,從2003年起該城市還將以每年3萬噸的速度產生新的垃圾,垃圾的資源化和回收處理已經成為該市城市建設中的重要問題.
          (1)假設1992年底該城市堆積的垃圾為10萬噸,從1993年到2002年這十年中,該城市每年產生的新垃圾以8%的年平均增長率增長,試求1993年該城市產生的新垃圾約有多少萬噸?(精確到0.01,參考數據:1.0810≈2.159)
          (2)如果從2003年起,該市每年處理上年堆積垃圾的20%,現(xiàn)有b1表示2003年底該市堆積的垃圾數量,b2表示2004年底該市堆積的垃圾數量…bn表示2002+n年底該城市堆積的垃圾數量,①求b1;②試歸納出bn的表達式(不用證明);③計算
          limn→∞
          bn,并說明其實際意義.

          查看答案和解析>>

          集合A1,A2,A3,…,An為集合M={1,2,3,…,n}的n個不同的子集,對于任意不大于n的正整數i,j滿足下列條件:
          ①i∉Ai,且每一個Ai至少含有三個元素;
          ②i∈Aj的充要條件是j∉Aj(其中i≠j).
          為了表示這些子集,作n行n列的數表(即n×n數表),規(guī)定第i行第j列數為:aij=
          0   當i∉AJ
          1        當i∈AJ時  

          (1)該表中每一列至少有多少個1;若集合M={1,2,3,4,5,6,7},請完成下面7×7數表(填符合題意的一種即可);
          (2)用含n的代數式表示n×n數表中1的個數f(n),并證明n≥7;
          (3)設數列{an}前n項和為f(n),數列{cn}的通項公式為:cn=5an+1,證明不等式:
          5cmn
          -
          cmcn
          >1對任何正整數m,n都成立.(第1小題用表)
          1 2 3 4 5 6 7
          1 0
          2 0
          3 0
          4 0
          5 0
          6 0
          7 0

          查看答案和解析>>

          已知數列
          1
          1×2
          1
          2×3
          ,
          1
          3×4
          ,…
          1
          n(n+1)
          計算S1,S2,S3,根據據算結果,猜想Sn的表達式,并用數學歸納法進行證明.

          查看答案和解析>>


          同步練習冊答案