日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 令得.切線與直線交點(diǎn)為. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
          (1)求函數(shù)f(x)的解析式;
          (2)令函數(shù)g(x)=x2-2x+k
          ①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
          ②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問:過點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
          (1)求函數(shù)f(x)的解析式;
          (2)令函數(shù)g(x)=x2-2x+k
          ①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
          ②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問:過點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
          (1)求函數(shù)f(x)的解析式;
          (2)令函數(shù)g(x)=x2-2x+k
          ①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
          ②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問:過點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說明理由.

          查看答案和解析>>

          如圖,已知直線)與拋物線和圓都相切,的焦點(diǎn).

          (Ⅰ)求的值;

          (Ⅱ)設(shè)上的一動(dòng)點(diǎn),以為切點(diǎn)作拋物線的切線,直線軸于點(diǎn),以為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;

          (Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為,    直線軸交點(diǎn)為,連接交拋物線、兩點(diǎn),求△的面積的取值范圍.

          【解析】第一問中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

          ,解得舍去)

          設(shè)與拋物線的相切點(diǎn)為,又,得,.     

          代入直線方程得:,∴    所以

          第二問中,由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

          設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

          ,得切線軸的點(diǎn)坐標(biāo)為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線

          第三問中,設(shè)直線,代入結(jié)合韋達(dá)定理得到。

          解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

          ,解得舍去).     …………………(2分)

          設(shè)與拋物線的相切點(diǎn)為,又,得,.     

          代入直線方程得:,∴    所以,.      ……(2分)

          (Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

          設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

          ,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)

          (Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

          ,

          的面積范圍是

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案