日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2.特殊函數(shù)法[例5] 如果函數(shù)f(x)=x2+bx+c對任意實數(shù)t都有f.f的大小關系是 . 查看更多

           

          題目列表(包括答案和解析)

          【例】

          已知函數(shù)y=sin2x+cos2x-2.

          (1)用“五點法”作出函數(shù)在一個周期內(nèi)的圖象;

          (2)求這個函數(shù)的周期和單調(diào)區(qū)間;

          (3)求函數(shù)圖象的對稱軸方程.

          (4)說明圖象是由y=sinx的圖象經(jīng)過怎樣的變換得到的.

          學科網(wǎng)

          查看答案和解析>>

          【示范高中】函數(shù)r=f(p)的圖象如圖所示,該圖中,若r只有唯一的p與之對應則r的范圍為
          [0,2]∪[5,+∞)
          [0,2]∪[5,+∞)

          查看答案和解析>>

          由已知得高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

          高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

          高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

          所以函數(shù)f(x)的值以6為周期重復性出現(xiàn).,所以f(2009)= f(5)=1,故選C.

          答案:C.

          【命題立意】:本題考查歸納推理以及函數(shù)的周期性和對數(shù)的運算.

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          單調(diào)遞減;當單調(diào)遞增,故當時,取最小值

          于是對一切恒成立,當且僅當.       、

          時,單調(diào)遞增;當時,單調(diào)遞減.

          故當時,取最大值.因此,當且僅當時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當

          從而,

          所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

           

          查看答案和解析>>

          【例】 如右圖,某地一天從6時到14時的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+)+B.

          (1)求這段時間的最大溫差;

          (2)寫出這段曲線的函數(shù)解析式.

          查看答案和解析>>


          同步練習冊答案