日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 14.(坐標(biāo)系與參數(shù)方程選做題)自極點(diǎn)向直線做垂線.垂足為.則直線的極坐標(biāo)方程是 . 查看更多

           

          題目列表(包括答案和解析)

          選做題 
          (1)已知a,b∈R,若M=所對應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.
          (2)已知直線l的參數(shù)方程為(t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox方向?yàn)闃O軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-).
          (Ⅰ)求直線l的傾斜角;
          (Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),求|AB|.

          查看答案和解析>>

          選做題 
          (1)已知a,b∈R,若M=
          -1a
          b3
          所對應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.
          (2)已知直線l的參數(shù)方程為
          x=
          1
          2
          t
          y=
          2
          2
          +
          3
          2
          t
          (t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox方向?yàn)闃O軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
          π
          4
          ).
          (Ⅰ)求直線l的傾斜角;
          (Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),求|AB|.

          查看答案和解析>>

          選做題本題包括A,B,C,D四小題,請選定其中 兩題 作答,每小題10分,共計(jì)20分,
          解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.
          A選修4-1:幾何證明選講
          自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
          B選修4-2:矩陣與變換
          已知二階矩陣A=,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為,屬于特征值λ2=4的一個(gè)特征向量為.求矩陣A.
          C選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.點(diǎn)
          P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
          D選修4-5:不等式選講
          若正數(shù)a,b,c滿足a+b+c=1,求的最小值.

          查看答案和解析>>

          精英家教網(wǎng)選做題本題包括A,B,C,D四小題,請選定其中 兩題 作答,每小題10分,共計(jì)20分,
          解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.
          A選修4-1:幾何證明選講
          自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。
          B選修4-2:矩陣與變換
          已知二階矩陣A=
          ab
          cd
          ,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α1=
          1
          -1
          ,屬于特征值λ2=4的一個(gè)特征向量為α2=
          3
          2
          .求矩陣A.
          C選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
          x=2cosα
          y=sinα
          (α為參數(shù))
          .以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
          π
          4
          )=2
          2
          .點(diǎn)
          P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
          D選修4-5:不等式選講
          若正數(shù)a,b,c滿足a+b+c=1,求
          1
          3a+2
          +
          1
          3b+2
          +
          1
          3c+2
          的最小值.

          查看答案和解析>>

          一、選擇題:本大題每小題5分,滿分50分.

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          C

          A

          A

          C

          B

          A

          B

          D

          D

          B

          二、填空題:本大題共5小題,每小題5分,滿分20分,其中14,15題是選做題,考生只能選做一題,,若兩題全都做的,只計(jì)算前一題的得分.

          11.(2,+∞)     12.    13. 4      14.     15. 9

          三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程或演算步驟.

          16.(本小題滿分12分)

          解:(Ⅰ)∵ ,   ………………1分

            ………………4分

          又 ∵  ,  ∴    …………………5分

          (Ⅱ)由,…………………7分

             …………………………9分

          由正弦定理 , 得 ……………………12分

          17.(本小題滿分13分)

          證明: (1) ∵ 三棱柱為直三棱柱,

                   ∴  平面, ∴,

               ∵  , , ,

                 ∴ ,

          ∴   , 又 ,

             ∴ 平面

          ∴      ……………………………………7分

             (2) 令的交點(diǎn)為, 連結(jié).

                 ∵  的中點(diǎn), 的中點(diǎn), ∴ .

                 又 ∵平面, 平面,

                ∴∥平面.    ………………………13分

          18.(本小題滿分13分)

          解: (1) 由題意得  , 即 ,…………………1分

                  當(dāng)時(shí) , ,…………4分

                   當(dāng)時(shí), , ………………5分

                   ∴  , ……………………6分

               (2) 由(1)得,…………………8分

                     ∴ 

                             . ……………………11分

                    因此,使得成立的必須且只需滿足, 即,

          故滿足要求的的最小正整數(shù)………………13分

          19.(本小題滿分14分)

          解: (1)設(shè)圓的圓心為,

          依題意圓的半徑     ……………… 2分

          ∵ 圓軸上截得的弦的長為.

            

          故    ………………………… 4分

           ∴   

              ∴  圓的圓心的軌跡方程為 ………………… 6分

          (2)    ∵   ,  ∴   ……………………… 9分

          令圓的圓心為, 則有 () ,…………… 10分

          又  ∵   …………………… 11分

          ∴    ……………………… 12分

          ∴       ……………………… 13分

          ∴   圓的方程為   …………………… 14分

          21.(本小題滿分14分)

          解:(Ⅰ)由已知

          解得,,   …………………2分

          ∴   ,     ∴     …………4分

          ∴  . ……………………5分

             (Ⅱ)在(Ⅰ)條件下,在區(qū)間恒成立,即在區(qū)間恒成立,

          從而在區(qū)間上恒成立,…………………8分

          令函數(shù),

          則函數(shù)在區(qū)間上是減函數(shù),且其最小值,

          的取值范圍為…………………………10分

             (Ⅲ)由,得,

          ∵       ∴,………………11分

          設(shè)方程的兩根為,則,,

          ∵  ,  ∴  ,    ∴,

          ∵  ,  ∴  ,

                ∴  ……………14分

          21.(本小題滿分14分)

          解:  (Ⅰ)解:當(dāng)時(shí),,,……………1分

          ,則.…………………3分

          所以,曲線在點(diǎn)處的切線方程為,

          .……………4分

          (Ⅱ)解:.…………6分

          由于,以下分兩種情況討論.

          (1)當(dāng)時(shí),令,得到,

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          極小值

          極大值

          所以在區(qū)間,內(nèi)為減函數(shù),在區(qū)間內(nèi)為增函數(shù)

          故函數(shù)在點(diǎn)處取得極小值,且

          函數(shù)在點(diǎn)處取得極大值,且.…………………10分

          (2)當(dāng)時(shí),令,得到,

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          極大值

          極小值

          所以在區(qū)間,內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù).

          函數(shù)處取得極大值,且

          函數(shù)處取得極小值,且.………………14分

           

           

           


          同步練習(xí)冊答案