日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 的條件下.在區(qū)間恒成立.試求的取值范圍, 查看更多

           

          題目列表(包括答案和解析)

          如下表,在相應(yīng)各前提下,滿足p是q的充分不必要條件所對(duì)應(yīng)的序號(hào)有
           
          (填出所有滿足要求的序號(hào)).
          序號(hào) 前提 p q
          在區(qū)間I上函數(shù)f(x)的最小值為m,g(x)的最大值為n m>n f(x)>g(x)在區(qū)
          間I上恒成立
          函數(shù)f(x)的導(dǎo)函數(shù)為f′(x) f′(x)>0在區(qū)間I上恒成立 f(x) 在區(qū)間I
          上單調(diào)遞增
          A、B為△ABC的兩內(nèi)角 A>B sinA>sinB
          兩平面向量
          a
          b
          a
          b
          <0
          a
          、
          b
          的夾角為鈍角
          直線l1:A1x+B1y+C1=0l2:A2x+B2y+C2=0
          A1B2=A2B1
          B1C2≠B2C1
          l1∥l2

          查看答案和解析>>

          如下表,在相應(yīng)各前提下,滿足p是q的充分不必要條件所對(duì)應(yīng)的序號(hào)有    (填出所有滿足要求的序號(hào)).
          序號(hào)前提pq
          在區(qū)間I上函數(shù)f(x)的最小值為m,g(x)的最大值為nm>nf(x)>g(x)在區(qū)
          間I上恒成立
          函數(shù)f(x)的導(dǎo)函數(shù)為f′(x)f′(x)>0在區(qū)間I上恒成立f(x) 在區(qū)間I
          上單調(diào)遞增
          A、B為△ABC的兩內(nèi)角A>BsinA>sinB
          兩平面向量、的夾角為鈍角
          直線l1:A1x+B1y+C1=0l2:A2x+B2y+C2=0l1∥l2

          查看答案和解析>>

          如下表,在相應(yīng)各前提下,滿足p是q的充分不必要條件所對(duì)應(yīng)的序號(hào)有______(填出所有滿足要求的序號(hào)).
          序號(hào) 前提 p q
          在區(qū)間I上函數(shù)f(x)的最小值為m,g(x)的最大值為n m>n f(x)>g(x)在區(qū)
          間I上恒成立
          函數(shù)f(x)的導(dǎo)函數(shù)為f′(x) f′(x)>0在區(qū)間I上恒成立 f(x) 在區(qū)間I
          上單調(diào)遞增
          A、B為△ABC的兩內(nèi)角 A>B sinA>sinB
          兩平面向量
          a
          b
          a
          b
          <0
          a
          、
          b
          的夾角為鈍角
          直線l1:A1x+B1y+C1=0l2:A2x+B2y+C2=0
          A1B2=A2B1
          B1C2≠B2C1
          l1l2

          查看答案和解析>>

          設(shè)函數(shù)

          (1)求函數(shù)的單調(diào)區(qū)間。

          (2)若,求的最小值。

          (3)在(2)條件下,恒成立,求的取值范圍。

          查看答案和解析>>

          (1)已知函數(shù)數(shù)學(xué)公式
          (Ⅰ)若a>1,且關(guān)于x的方程f(x)=m有兩個(gè)不同的正數(shù)解,求實(shí)數(shù)m的取值范圍;
          (Ⅱ)設(shè)函數(shù)g(x)=f(-x),x∈[-2,+∞),g(x)滿足如下性質(zhì):若存在最大(。┲,則最大(。┲蹬ca無(wú)關(guān).試求a的取值范圍.
          (2)已知函數(shù)f(x)=lnx-mx+m,m∈R.
          (I)求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)若f(x)≤0在x∈(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
          (Ⅲ)在(Ⅱ)的條件下,任意的0<a<b,求證:數(shù)學(xué)公式

          查看答案和解析>>

          一、選擇題:本大題每小題5分,滿分50分.

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          C

          A

          A

          C

          B

          A

          B

          D

          D

          B

          二、填空題:本大題共5小題,每小題5分,滿分20分,其中14,15題是選做題,考生只能選做一題,,若兩題全都做的,只計(jì)算前一題的得分.

          11.(2,+∞)     12.    13. 4      14.     15. 9

          三、解答題:本大題共6小題,滿分80分.解答須寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

          16.(本小題滿分12分)

          解:(Ⅰ)∵ ,   ………………1分

            ………………4分

          又 ∵  ,  ∴    …………………5分

          (Ⅱ)由,…………………7分

             …………………………9分

          由正弦定理 , 得 ……………………12分

          17.(本小題滿分13分)

          證明: (1) ∵ 三棱柱為直三棱柱,

                   ∴  平面, ∴,

               ∵  , , ,

                 ∴ ,

          ∴   , 又 ,

             ∴ 平面

          ∴      ……………………………………7分

             (2) 令的交點(diǎn)為, 連結(jié).

                 ∵  的中點(diǎn), 的中點(diǎn), ∴ .

                 又 ∵平面, 平面,

                ∴∥平面.    ………………………13分

          18.(本小題滿分13分)

          解: (1) 由題意得  , 即 ,…………………1分

                  當(dāng)時(shí) , ,…………4分

                   當(dāng)時(shí), , ………………5分

                   ∴  , ……………………6分

               (2) 由(1)得,…………………8分

                     ∴ 

                             . ……………………11分

                    因此,使得成立的必須且只需滿足, 即,

          故滿足要求的的最小正整數(shù)………………13分

          19.(本小題滿分14分)

          解: (1)設(shè)圓的圓心為,

          依題意圓的半徑     ……………… 2分

          ∵ 圓軸上截得的弦的長(zhǎng)為.

            

          故    ………………………… 4分

           ∴   

              ∴  圓的圓心的軌跡方程為 ………………… 6分

          (2)    ∵   ,  ∴   ……………………… 9分

          令圓的圓心為, 則有 () ,…………… 10分

          又  ∵   …………………… 11分

          ∴    ……………………… 12分

          ∴       ……………………… 13分

          ∴   圓的方程為   …………………… 14分

          21.(本小題滿分14分)

          解:(Ⅰ)由已知

          解得,,   …………………2分

          ∴   ,     ∴     …………4分

          ∴  . ……………………5分

             (Ⅱ)在(Ⅰ)條件下,在區(qū)間恒成立,即在區(qū)間恒成立,

          從而在區(qū)間上恒成立,…………………8分

          令函數(shù),

          則函數(shù)在區(qū)間上是減函數(shù),且其最小值,

          的取值范圍為…………………………10分

             (Ⅲ)由,得,

          ∵       ∴,………………11分

          設(shè)方程的兩根為,則,,

          ∵  ,  ∴  ,    ∴,

          ∵  ,  ∴  ,

                ∴  ……………14分

          21.(本小題滿分14分)

          解:  (Ⅰ)解:當(dāng)時(shí),,……………1分

          ,則.…………………3分

          所以,曲線在點(diǎn)處的切線方程為,

          .……………4分

          (Ⅱ)解:.…………6分

          由于,以下分兩種情況討論.

          (1)當(dāng)時(shí),令,得到,,

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          極小值

          極大值

          所以在區(qū)間,內(nèi)為減函數(shù),在區(qū)間內(nèi)為增函數(shù)

          故函數(shù)在點(diǎn)處取得極小值,且,

          函數(shù)在點(diǎn)處取得極大值,且.…………………10分

          (2)當(dāng)時(shí),令,得到,

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          極大值

          極小值

          所以在區(qū)間,內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù).

          函數(shù)處取得極大值,且

          函數(shù)處取得極小值,且.………………14分

           

           

           


          同步練習(xí)冊(cè)答案