日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 而當時.解法五 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù).(

          (1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

          (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

          【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

          解:(1)在區(qū)間上單調(diào)遞增,

          在區(qū)間上恒成立.  …………3分

          ,而當時,,故. …………5分

          所以.                 …………6分

          (2)令,定義域為

          在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

                  …………9分

          ① 若,令,得極值點,

          ,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

          ,即時,同理可知,在區(qū)間上遞增,

          ,也不合題意;                     …………11分

          ② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

          要使在此區(qū)間上恒成立,只須滿足

          由此求得的范圍是.        …………13分

          綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

           

          查看答案和解析>>

          已知,(其中

          ⑴求;

          ⑵試比較的大小,并說明理由.

          【解析】第一問中取,則;                         …………1分

          對等式兩邊求導,得

          ,則得到結論

          第二問中,要比較的大小,即比較:的大小,歸納猜想可得結論當時,;

          時,;

          時,;

          猜想:當時,運用數(shù)學歸納法證明即可。

          解:⑴取,則;                         …………1分

          對等式兩邊求導,得,

          ,則。       …………4分

          ⑵要比較的大小,即比較:的大小,

          時,

          時,;

          時,;                              …………6分

          猜想:當時,,下面用數(shù)學歸納法證明:

          由上述過程可知,時結論成立,

          假設當時結論成立,即,

          時,

          時結論也成立,

          ∴當時,成立。                          …………11分

          綜上得,當時,

          時,;

          時, 

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項公式;

          (2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設數(shù)列公差為,

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設數(shù)列公差為,由題意可知,即,

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于,

          時,;當時,

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學歸納法.

          時,,成立.

          假設當時,不等式成立,

          時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設數(shù)列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          汕頭二中擬建一座長米,寬米的長方形體育館.按照建筑要求,每隔米(,為正常數(shù))需打建一個樁位,每個樁位需花費萬元(樁位視為一點且打在長方形的邊上),樁位之間的米墻面需花萬元,在不計地板和天花板的情況下,當為何值時,所需總費用最少?

          【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。先求需打個樁位.再求解墻面所需費用為:,最后表示總費用,利用導數(shù)判定單調(diào)性,求解最值。

          解:由題意可知,需打個樁位. …………………2分

          墻面所需費用為:,……4分

          ∴所需總費用)…7分

          ,則 

          時,;當時,

          ∴當時,取極小值為.而在內(nèi)極值點唯一,所以.∴當時,(萬元),即每隔3米打建一個樁位時,所需總費用最小為1170萬元.

           

          查看答案和解析>>

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點  處的的切線方程;

          (Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

          【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。

          第一問中,利用當時,

          因為切點為(), 則,                 

          所以在點()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當時,

          ,                                  

          因為切點為(), 則,                  

          所以在點()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因為,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當時,上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當時,令,對稱軸

          上單調(diào)遞增,又    

          ① 當,即時,上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當時,, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>


          同步練習冊答案