日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)定義域為的函數(shù).若關(guān)于的方程有3個不同的整數(shù)解.則等于 查看更多

           

          題目列表(包括答案和解析)

          設(shè)定義域為的函數(shù),若關(guān)于的方程有三個不同的實數(shù)解,則等于_______________

          查看答案和解析>>

          設(shè)定義域為的函數(shù),若關(guān)于的方程有3個不同的整數(shù)解,則等于                               (    )

          A、5    B、    C、13    D、

          查看答案和解析>>

          設(shè)定義域為的函數(shù),若關(guān)于的方程有三個不同的實數(shù)解,則____

          查看答案和解析>>

          設(shè)定義域為的函數(shù),若關(guān)于的方程有3個不同的整數(shù)解,則等于

          [  ]

          A.5

          B.

          C.13

          D.

          查看答案和解析>>

          設(shè)定義域為的函數(shù),若關(guān)于的方程有三個不同的實數(shù)解、,則 ___________

          查看答案和解析>>

          一、選擇題:DDBD   CCBA

          二、填空題:9、  10、-2    11、1    12、11   

          13、解析:    14、

          15、解:(Ⅰ)時,f(x)>1

          令x=-1,y=0則f(-1)=f(-1)f(0)∵f(-1)>1

          ∴f(0)=1

          若x>0,則f(x-x)=f(0)=f(x)f(-x)故

          故x∈R   f(x)>0

          任取x1<x2   

          故f(x)在R上減函數(shù)

          (Ⅱ)①  由f(x)單調(diào)性

           an+1=an+2  故{an}等差數(shù)列    

             是遞增數(shù)列

           當(dāng)n≥2時,

           

          而a>1,∴x>1

          故x的取值范圍(1,+∞)

          16、解:(I),

          (舍去)

          單調(diào)遞增;

          當(dāng)單調(diào)遞減. 

          上的極大值 

             (II)由

          , …………① 

          設(shè)

          ,

          依題意知上恒成立,

          ,

           上單增,要使不等式①成立,

          當(dāng)且僅當(dāng) 

             (III)由

          ,

          當(dāng)上遞增;

          當(dāng)上遞減 

          ,

          恰有兩個不同實根等價于

                  

          17、解:(Ⅰ)由題可得

          所以曲線在點(diǎn)處的切線方程是:

          ,得.即.顯然,∴

          (Ⅱ)由,知,同理

             故

          從而,即.所以,數(shù)列成等比數(shù)列.

          .即

          從而所以

          (Ⅲ)由(Ⅱ)知,

          當(dāng)時,顯然

          當(dāng)時,

             綜上,

          18、解:(I)

          (舍去)

          單調(diào)遞增;

          當(dāng)單調(diào)遞減.  

          上的極大值  

             (II)由

          , …………①  

          設(shè),

          依題意知上恒成立,

          ,

           上單增,要使不等式①成立,

          當(dāng)且僅當(dāng)

             (III)由

          ,

          當(dāng)上遞增;

          當(dāng)上遞減  

          ,

          恰有兩個不同實根等價于

            

           


          同步練習(xí)冊答案