日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ②當時.解方程=0.得.即方程=0只有兩個相異的實數(shù)根, 查看更多

           

          題目列表(包括答案和解析)

          已知,設是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.

          【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,的最小值為3.

          要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          可得到要使“P∧Q”為真命題,只需P真Q真即可。

          解:由題設x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當a∈[1,2]時,的最小值為3.

          要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          綜上,要使“P∧Q”為真命題,只需P真Q真,即

          解得實數(shù)m的取值范圍是(4,8]

           

          查看答案和解析>>

          已知函數(shù),

          (Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實數(shù)的取值范圍;

          (Ⅱ)若方程有唯一解,求實數(shù)的值.

          【解析】第一問,   

          當0<x<2時,,當x>2時,,

          要使在(a,a+1)上遞增,必須

          如使在(a,a+1)上遞增,必須,即

          由上得出,當,上均為增函數(shù)

          (Ⅱ)中方程有唯一解有唯一解

            (x>0)

          隨x變化如下表

          x

          -

          +

          極小值

          由于在上,只有一個極小值,的最小值為-24-16ln2,

          當m=-24-16ln2時,方程有唯一解得到結論。

          (Ⅰ)解: 

          當0<x<2時,,當x>2時,,

          要使在(a,a+1)上遞增,必須

          如使在(a,a+1)上遞增,必須,即

          由上得出,當上均為增函數(shù)  ……………6分

          (Ⅱ)方程有唯一解有唯一解

            (x>0)

          隨x變化如下表

          x

          -

          +

          極小值

          由于在上,只有一個極小值,的最小值為-24-16ln2,

          當m=-24-16ln2時,方程有唯一解

           

          查看答案和解析>>

          已知,函數(shù)

          (1)當時,求函數(shù)在點(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

          【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當時,  又    

          ∴  函數(shù)在點(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時,極大值為,無極小值

          時  極大值是,極小值是        ----------8分

          (Ⅲ)設

          求導,得

              

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實數(shù)的取值范圍是(,

           

          查看答案和解析>>

          已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

          (Ⅰ)求實數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

          【解析】第一問當時,,則

          依題意得:,即    解得

          第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值

          第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          (Ⅰ)當時,,則

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當時,,令

          變化時,的變化情況如下表:

          0

          0

          +

          0

          單調遞減

          極小值

          單調遞增

          極大值

          單調遞減

          ,。∴上的最大值為2.

          ②當時, .當時, ,最大值為0;

          時, 上單調遞增!最大值為

          綜上,當時,即時,在區(qū)間上的最大值為2;

          時,即時,在區(qū)間上的最大值為。

          (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時,

          代入(*)式得:    即   (**)

           ,則

          上單調遞增,  ∵     ∴,∴的取值范圍是。

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

           

          查看答案和解析>>


          同步練習冊答案