日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2){Cn}的前n-1項(xiàng)中共有{an}中的1+2+3+-(n-1)=個(gè)項(xiàng) 查看更多

           

          題目列表(包括答案和解析)

          已知等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{bn}滿足2n2-(t+bn)n+
          32
          bn=0(t∈R,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
          (3)當(dāng){bn}為等差數(shù)列時(shí),對任意正整數(shù)k,在ak與ak+1之間插入2共bk個(gè),得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tn=2cm+1的所有正整數(shù)m的值.

          查看答案和解析>>

          已知等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{bn}滿足2n2-(t+bn)n+數(shù)學(xué)公式bn=0(t∈R,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
          (3)當(dāng){bn}為等差數(shù)列時(shí),對任意正整數(shù)k,在ak與ak+1之間插入2共bk個(gè),得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tn=2cm+1的所有正整數(shù)m的值.

          查看答案和解析>>

          已知等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{bn}滿足2n2-(t+bn)n+
          3
          2
          bn=0(t∈R,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
          (3)當(dāng){bn}為等差數(shù)列時(shí),對任意正整數(shù)k,在ak與ak+1之間插入2共bk個(gè),得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tn=2cm+1的所有正整數(shù)m的值.

          查看答案和解析>>

          已知等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{bn}滿足2n2-(t+bn)n+bn=0(t∈R,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
          (3)當(dāng){bn}為等差數(shù)列時(shí),對任意正整數(shù)k,在ak與ak+1之間插入2共bk個(gè),得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tn=2cm+1的所有正整數(shù)m的值.

          查看答案和解析>>

          已知等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{bn}滿足2n2-(t+bn)n+bn=0(t∈R,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
          (3)當(dāng){bn}為等差數(shù)列時(shí),對任意正整數(shù)k,在ak與ak+1之間插入2共bk個(gè),得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tn=2cm+1的所有正整數(shù)m的值.

          查看答案和解析>>


          同步練習(xí)冊答案