日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)因?yàn)?所以∠BCA即為異面直線與所成角 ------- 查看更多

           

          題目列表(包括答案和解析)

          設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

          對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

          記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

          (1)   對(duì)如下數(shù)表A,求K(A)的值;

          1

          1

          -0.8

          0.1

          -0.3

          -1

           

          (2)設(shè)數(shù)表A∈S(2,3)形如

          1

          1

          c

          a

          b

          -1

           

          求K(A)的最大值;

          (3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。

          【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

          所以

          (2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

          于是,,

              

          所以,當(dāng),且時(shí),取得最大值1。

          (3)對(duì)于給定的正整數(shù)t,任給數(shù)表如下,

          任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表

          ,并且,因此,不妨設(shè),

          。

          得定義知,,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

          所以

               

               

          所以,

          對(duì)數(shù)表

          1

          1

          1

          -1

          -1

           

          ,

          綜上,對(duì)于所有的,的最大值為

           

          查看答案和解析>>

          已知,且

          (1)求的值;

          (2)求的值.

          【解析】本試題主要考查了二項(xiàng)式定理的運(yùn)用,以及系數(shù)求和的賦值思想的運(yùn)用。第一問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以,可得,第二問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image008.png">,所以,所以,利用組合數(shù)性質(zhì)可知。

          解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以,  ……3分

          化簡(jiǎn)可得,且,解得.    …………6分

          (2),所以,

          所以,

           

          查看答案和解析>>

          用水清洗一堆蔬菜,據(jù)科學(xué)測(cè)定,其效果如下:用x單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與這次清洗前殘留的農(nóng)藥量之比為f(x)=
          11+x2

          (1)因?yàn)閒(0)=
          1
          1
          ,所以f(0)的實(shí)際意義是
          B
          B
          (后一個(gè)處請(qǐng)選擇下列之一);
          A.表示沒(méi)有用水清洗時(shí),蔬菜上的農(nóng)藥量;
          B.表示沒(méi)有用水清洗時(shí),蔬菜上的農(nóng)藥量沒(méi)有變化;
          C.表示沒(méi)有用水清洗.
          (2)現(xiàn)用a(a>0)單位量的水去清洗一堆蔬菜,方案一:用a單位量的水清洗一次;
          方案二:把a(bǔ)單位量的水平均分成2份后清洗兩次.試問(wèn):哪種方案比較好(即清洗后蔬菜上殘留的農(nóng)藥量比較少)?請(qǐng)說(shuō)明理由.
          (為方便計(jì)算,可以假設(shè)清洗前蔬菜上的農(nóng)藥量為1,清洗后殘留的農(nóng)藥量:方案一的記為W1,方案二的記為W2).

          查看答案和解析>>

          下列四個(gè)命題中,i為虛數(shù)單位,則正確的命題是( 。

          查看答案和解析>>

          下列說(shuō)法,正確的是(  )

          查看答案和解析>>


          同步練習(xí)冊(cè)答案