日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A.2 B.1 C. D. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)(    )

          A、0         B、1          C、2         D、3

           

          查看答案和解析>>

          (    )

          A、1             B、2              C、          D、

           

          查看答案和解析>>

          A、B是拋物線C:y2=2px(p>0)上的兩個(gè)動(dòng)點(diǎn),F(xiàn)是焦點(diǎn),直線AB不垂直于x軸且交x軸于點(diǎn)D.
          (1)若D與F重合,且直線AB的傾斜角為
          π
          4
          ,求證:
          OA
          OB
          p2
          是常數(shù)(O是坐標(biāo)原點(diǎn));
          (2)若|AF|+|BF|=8,線段AB的垂直平分線恒過(guò)定點(diǎn)Q(6,0),求拋物線C的方程.

          查看答案和解析>>

          a、b為實(shí)數(shù)且b-a=2,若多項(xiàng)式函數(shù)f(x)在區(qū)間(a,b)上的導(dǎo)數(shù)f′(x)滿足f′(x)<0,則一定成立的關(guān)系式是( 。

          查看答案和解析>>

          A、B、C、D四點(diǎn)的坐標(biāo)依次是(-1,0)、(0,2)、(4,3)、(3,1),則四邊形ABCD為(    )

          A.正方形              B.矩形               C.菱形               D.平行四邊形

          查看答案和解析>>

          一、選擇題:

          1.B   2.C  3.D   4.C   5. B   6.A   7. C   8.A  9.A  10. B 11.B  12. A

          二、填空題:

          13.       14.      15.       16.     

          17. 360     18.      19.       20.1320    21.2/5   22.5    23. 9/8      24. 正四面體內(nèi)任意一點(diǎn)到各個(gè)面的距離之和等于此正四面體的高   25.5/7   26.   

          三、解答題:

          27解:(I)

          (II)由   得

                    

          x的取值范圍是

          28解:(1)甲隊(duì)以二比一獲勝,即前兩場(chǎng)中甲勝1場(chǎng),第三場(chǎng)甲獲勝,其概率為

          (2)乙隊(duì)以2:0獲勝的概率為

          乙隊(duì)以2:1獲勝的概率為

          ∴乙隊(duì)獲勝的概率為P2=P'2+P''2=0.16+0.192=0.352.

          29解:(1)

            1. 由①②解得a=1,b=3

              (2)

              30解:(1)設(shè)正三棱柱的側(cè)棱長(zhǎng)為.取中點(diǎn),連

              是正三角形,

              又底面側(cè)面,且交線為

              側(cè)面

              ,則直線與側(cè)面所成的角為

              中,,解得

              此正三棱柱的側(cè)棱長(zhǎng)為.                 

               注:也可用向量法求側(cè)棱長(zhǎng).

              (2)解法1:過(guò),連

              側(cè)面為二面角的平面角.

              中,,

              ,

              中,

              故二面角的大小為.      

              (3)解法1:由(2)可知,平面,平面平面,且交線為

              過(guò),則平面

              中,

              中點(diǎn),點(diǎn)到平面的距離為. 

              解法2:(思路)取中點(diǎn),連,

              ,易得平面平面,且交線為

              過(guò)點(diǎn),則的長(zhǎng)為點(diǎn)到平面的距離.

              解法3:(思路)等體積變換:由可求.

              解法4:(向量法,見(jiàn)后)

              題(Ⅱ)、(Ⅲ)的向量解法:

              (2)解法2:如圖,建立空間直角坐標(biāo)系

              設(shè)為平面的法向量.

              .取

              又平面的一個(gè)法向量

              結(jié)合圖形可知,二面角的大小為.     

              (3)解法4:由(2)解法2,

              點(diǎn)到平面的距離

              31解:(1)由已知,),

              ),且

              ∴數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列.

              (2)∵,∴,要使恒成立,

              恒成立,

              恒成立,

              恒成立.

              (?)當(dāng)為奇數(shù)時(shí),即恒成立,

              當(dāng)且僅當(dāng)時(shí),有最小值為1,

              (?)當(dāng)為偶數(shù)時(shí),即恒成立,

              當(dāng)且僅當(dāng)時(shí),有最大值,

              ,又為非零整數(shù),則

              綜上所述,存在,使得對(duì)任意,都有

              32解:(1)∵,∴

              又∵,∴

              ,∴橢圓的標(biāo)準(zhǔn)方程為.    

              (2)顯然的斜率不為0,當(dāng)的斜率不為0時(shí),設(shè)方程為,

              代入橢圓方程整理得:

              ,

              即: ,

              當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號(hào).

              ∴三角形△ABF面積的最大值是.                      

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>