日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16 有 以下幾個命題 查看更多

           

          題目列表(包括答案和解析)

          12、已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導(dǎo)函數(shù)f′(x)的圖象如圖,則有以下幾個命題:
          (1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);
          (2)f(x)只在x=-2處取得極大值;
          (3)f(x)在x=-2與x=2處取得極大值;
          (4)f(x)在x=0處取得極小值.
          其中正確命題的個數(shù)為( 。

          查看答案和解析>>

          已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導(dǎo)函數(shù)f′(x)的圖象如圖,則有以下幾個命題:

          (1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);
          (2)f(x)只在x=-2處取得極大值;
          (3)f(x)在x=-2與x=2處取得極大值;
          (4)f(x)在x=0處取得極小值.
          其中正確命題的個數(shù)為                                                               (  )

          A.1B.2
          C.3D.4

          查看答案和解析>>

          已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導(dǎo)函數(shù)f′(x)的圖象如圖,則有以下幾個命題:

          (1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);

          (2)f(x)只在x=-2處取得極大值;

          (3)f(x)在x=-2與x=2處取得極大值;

          (4)f(x)在x=0處取得極小值.

          其中正確命題的個數(shù)為                                                               (  )

          A.1                                               B.2

          C.3                                               D.4

           

          查看答案和解析>>

          (08年鷹潭市二模理)有以下幾個命題

           ①曲線平移可得曲線

          ②直線AB與平面相交于點B,且AB與內(nèi)相交于點C的三條互不重合的直線CD、CE、CF所成的角相等,則AB⊥;

          ③已知橢圓與雙曲線有相同的準(zhǔn)線,則動點的軌跡為直線

          ④若直線在平面內(nèi)的射影依次為一個點和一條直線,且,則;

          ⑤設(shè)A、B為平面上兩個定點,P為動點,若,則動點P的軌跡為圓

          其中真命題的序號為               ;(寫出所有真命題的序號) 

          查看答案和解析>>

          設(shè)x1,x2為y=f(x)的定義域內(nèi)的任意兩個變量,有以下幾個命題:
          ①(x1-x2)[f(x1)-f(x2)]>0;
          ②(x1-x2)[f(x1)-f(x2)]<0;
          f(x1)-f(x2)
          x1-x2
          >0;
          f(x1)-f(x2)
          x1-x2
          <0.
          其中能推出函數(shù)y=f(x)為增函數(shù)的命題為
          ①③
          ①③

          查看答案和解析>>

          一、選擇題:(本大題共10小題,每小題5分,共50分)

            1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

          二、填空題:(本大題共6小題,每小題4分,共24分。

          11  (文)“若,則” ,(理)

          12  (文) ,(理), 

          13  (文),(理)-2

          14  -2      15            16  ②④

          三、解答題:(本大題共6個解答題,滿分76分,)

          17  (文)解:以AN所在直線為x軸,AN的中垂

          線為y軸建立平面直角坐標(biāo)系如圖所示,

          則A(-4,0),N(4,0),設(shè)P(x,y)  

          由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                                       

          代入坐標(biāo)得:        

          整理得:                        

                                      

          所以動點P的軌跡是以點

          (理)解:(I)當(dāng)a=1時  

                                      

           或         

                                         

          (II)原不等式              

          設(shè) 

          當(dāng)且僅當(dāng)

                              

          依題有:10a<10  ∴為所求  

           18  (文)解:

            

             解得        

                             

                                      

           

          若由方程組解得,可參考給分

          (理)解:(Ⅰ)設(shè)    (a≠0),則

                     ……     ①

                    ……    ②

          又∵有兩等根

                ∴……  ③

          由①②③得                         

          又∵

            ∴a<0, 故

                                  

              (Ⅱ)

                                  

                 ∵g(x)無極值

                 ∴方程

                

                得                      

          19  (文)解:(I)當(dāng)a=1時  

                                      

           或         

                                        

          (II)原不等式              

          設(shè) 

          當(dāng)且僅當(dāng)

                             

          依題有:10a<10  ∴為所求                       

           

          (理)解:以AN所在直線為x軸,AN的中垂

          線為y軸建立平面直角坐標(biāo)系如圖所示,

          則A(-4,0),N(4,0),設(shè)P(x,y)  

          由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                                        

          代入坐標(biāo)得:        

          整理得:                       

                                      

          所以動點P的軌跡是以點

          20  (文)解:(Ⅰ)設(shè)    (a≠0),則

                     ……     ①

                    ……    ②

          又∵有兩等根

                ∴……  ③

          由①②③得                         

          又∵

            ∴a<0, 故

                                 

              (Ⅱ)

                                  

                 ∵g(x)無極值

                 ∴方程

                

                得                             

          (理)解:(I)設(shè)       (1)

               (2)

          由(1),(2)解得              

          (II)由向量與向量的夾角為

          及A+B+C=知A+C=

                      

               

          由0<A<,得

          的取值范圍是                      

           

          21   解:(I)由已知得Sn=2an-3n,

          Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

          所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進而可知an+3

          所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

          所以3+an=6,即an=3()                           

          同步練習(xí)冊答案