日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 故.符合題意. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

          ,得

          當(dāng)x變化時(shí),,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

          ,得

          ①當(dāng)時(shí),,上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時(shí),,對(duì)于,,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

          當(dāng)時(shí),

                                

                                

          在(2)中取,得

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>

          A

          解析:由題意:等比數(shù)列{}有連續(xù)四項(xiàng)在集合{-54,-24,18,36,81}中,由等比數(shù)列的定義知,四項(xiàng)是兩個(gè)正數(shù),兩個(gè)負(fù)數(shù)且|q|>1,故-24, 36, -54,81符合題意,則q=,6q=-9.

          查看答案和解析>>

          A

          解析:由題意:等比數(shù)列{}有連續(xù)四項(xiàng)在集合{-54,-24,18,36,81}中,由等比數(shù)列的定義知,四項(xiàng)是兩個(gè)正數(shù),兩個(gè)負(fù)數(shù)且|q|>1,故-24, 36, -54,81符合題意,則q=,6q=-9.

          查看答案和解析>>

          A

          解析:由題意:等比數(shù)列{}有連續(xù)四項(xiàng)在集合{-54,-24,18,36,81}中,由等比數(shù)列的定義知,四項(xiàng)是兩個(gè)正數(shù),兩個(gè)負(fù)數(shù)且|q|>1,故-24, 36, -54,81符合題意,則q=,6q=-9.

          查看答案和解析>>

          已知函數(shù)為實(shí)數(shù)).

          (Ⅰ)當(dāng)時(shí),求的最小值;

          (Ⅱ)若上是單調(diào)函數(shù),求的取值范圍.

          【解析】第一問中由題意可知:. ∵ ∴  ∴.

          當(dāng)時(shí),; 當(dāng)時(shí),. 故.

          第二問.

          當(dāng)時(shí),,在上有,遞增,符合題意;  

          ,則,∴上恒成立.轉(zhuǎn)化后解決最值即可。

          解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

          當(dāng)時(shí),; 當(dāng)時(shí),. 故.

          (Ⅱ) .

          當(dāng)時(shí),,在上有遞增,符合題意;  

          ,則,∴上恒成立.∵二次函數(shù)的對(duì)稱軸為,且

            .   綜上

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案