日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即恒成立.則.-------12分 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點  處的的切線方程;

          (Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

          第一問中,利用當(dāng)時,

          因為切點為(), 則,                 

          所以在點()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當(dāng)時,

          ,                                  

          因為切點為(), 則,                  

          所以在點()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因為,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當(dāng)時,上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當(dāng)時,令,對稱軸,

          上單調(diào)遞增,又    

          ① 當(dāng),即時,上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當(dāng)時,, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù)

          (I)若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;

          (II)當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍.

          (Ⅲ)求證:解:(1),其定義域為,則,

          ,

          當(dāng)時,;當(dāng)時,

          在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

          即當(dāng)時,函數(shù)取得極大值.                                       (3分)

          函數(shù)在區(qū)間上存在極值,

           ,解得                                            (4分)

          (2)不等式,即

          (6分)

          ,則,

          ,即上單調(diào)遞增,                          (7分)

          ,從而,故上單調(diào)遞增,       (7分)

                    (8分)

          (3)由(2)知,當(dāng)時,恒成立,即,

          ,則,                               (9分)

                                                                                 (10分)

          以上各式相加得,

                                     

                                                  (12分)

          。

           

          查看答案和解析>>


          同步練習(xí)冊答案