日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以由=h解得h=. ----------------11分 查看更多

           

          題目列表(包括答案和解析)

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          已知函數(shù),其中.

            (1)若處取得極值,求曲線在點(diǎn)處的切線方程;

            (2)討論函數(shù)的單調(diào)性;

            (3)若函數(shù)上的最小值為2,求的取值范圍.

          【解析】第一問,處取得極值

          所以,,解得,此時(shí),可得求曲線在點(diǎn)

          處的切線方程為:

          第二問中,易得的分母大于零,

          ①當(dāng)時(shí), ,函數(shù)上單調(diào)遞增;

          ②當(dāng)時(shí),由可得,由解得

          第三問,當(dāng)時(shí)由(2)可知,上處取得最小值

          當(dāng)時(shí)由(2)可知處取得最小值,不符合題意.

          綜上,函數(shù)上的最小值為2時(shí),求的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)y=x²-3x+c的圖像與x恰有兩個(gè)公共點(diǎn),則c=

          (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

          【解析】若函數(shù)的圖象與軸恰有兩個(gè)公共點(diǎn),則說明函數(shù)的兩個(gè)極值中有一個(gè)為0,函數(shù)的導(dǎo)數(shù)為,令,解得,可知當(dāng)極大值為,極小值為.由,解得,由,解得,所以,選A.

           

          查看答案和解析>>

          對某班級名學(xué)生學(xué)習(xí)數(shù)學(xué)與學(xué)習(xí)物理的成績進(jìn)行調(diào)查,得到如下表所示:

           

          數(shù)學(xué)成績較好

          數(shù)學(xué)成績一般

          合計(jì)

          物理成績較好

          18

          7

          25

          物理成績一般

          6

          19

          25

          合計(jì)

          24

          26

          50

          ,解得

          0.050

          0.010

          0.001

          3.841

          6.635

          10.828

           

          參照附表,得到的正確結(jié)論是(    )

          (A)在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“數(shù)學(xué)成績與物理成績有關(guān)”

          (B)在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“數(shù)學(xué)成績與物理成績無關(guān)”

          (C)有的把握認(rèn)為“數(shù)學(xué)成績與物理成績有關(guān)”

          (D)有以上的把握認(rèn)為“數(shù)學(xué)成績與物理成績無關(guān)”

           

          查看答案和解析>>

          已知向量),向量,

          .

          (Ⅰ)求向量; (Ⅱ)若,求.

          【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

          (1)問中∵,∴,…………………1分

          ,得到三角關(guān)系是,結(jié)合,解得。

          (2)由,解得,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

          解析一:(Ⅰ)∵,∴,…………1分

          ,∴,即   ①  …………2分

           ②   由①②聯(lián)立方程解得,5分

               ……………6分

          (Ⅱ)∵,,  …………7分

          ,               ………8分

          又∵,          ………9分

          ,            ……10分

          解法二: (Ⅰ),…………………………………1分

          ,∴,即,①……2分

              ②

          將①代入②中,可得   ③    …………………4分

          將③代入①中,得……………………………………5分

             …………………………………6分

          (Ⅱ) 方法一 ∵,,∴,且……7分

          ,從而.      …………………8分

          由(Ⅰ)知;     ………………9分

          .     ………………………………10分

          又∵,∴, 又,∴    ……11分

          綜上可得  ………………………………12分

          方法二∵,,∴,且…………7分

          .                                 ……………8分

          由(Ⅰ)知 .                …………9分

                       ……………10分

          ,且注意到,

          ,又,∴   ………………………11分

          綜上可得                    …………………12分

          (若用,又∵ ∴

           

          查看答案和解析>>


          同步練習(xí)冊答案