日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)令是(Ⅰ)中求得的最大整數(shù).若對(duì)任意的恒成立.求實(shí)數(shù)的取值范圍. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=x3-ax2+(3-2a)x+b在(0,+∞)上是增函數(shù).

          (Ⅰ)求整數(shù)a的最大值;

          (Ⅱ)令a是(Ⅰ)中求得的最大整數(shù),若對(duì)任意的恒成立,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          (08年青島市質(zhì)檢一文)(12分)已知函數(shù)上是增函數(shù)。

             (I)求整數(shù)a的最大值;

             (II)令a是(I)中求得的最大整數(shù),若對(duì)任意的恒成立,求實(shí)數(shù)b的取值范圍。

          查看答案和解析>>

          已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿(mǎn)足,.?dāng)?shù)列滿(mǎn)足,,為數(shù)列的前n項(xiàng)和.

          (1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

          (2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

          (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

          【解析】第一問(wèn)利用在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿(mǎn)足,

          第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號(hào)在n=2時(shí)取得.

          此時(shí) 需滿(mǎn)足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿(mǎn)足

          第三問(wèn),

               若成等比數(shù)列,則,

          即.

          ,可得,即

                  .

          (1)(法一)在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿(mǎn)足,

          ,

          (2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號(hào)在n=2時(shí)取得.

          此時(shí) 需滿(mǎn)足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿(mǎn)足

          綜合①、②可得的取值范圍是

          (3),

               若成等比數(shù)列,則,

          即.

          ,可得,即,

          ,且m>1,所以m=2,此時(shí)n=12.

          因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

           

          查看答案和解析>>

          數(shù)列{an}是公差為d(d>0)的等差數(shù)列,且a2是a1與a4的等比中項(xiàng),設(shè)Sn=a1+a3+a5+…+a2n-1(n∈N*).
          (1)求證:
          Sn
          +
          Sn+2
          =2
          Sn+1
          ;
          (2)若d=
          1
          4
          ,令bn=
          Sn
          2n-1
          ,{bn}的前n項(xiàng)和為T(mén)n,是否存在整數(shù)P、Q,使得對(duì)任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案