日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A . y= B. y= C. y= D. y= 查看更多

           

          題目列表(包括答案和解析)

          y的定義域?yàn)?  )

          A.2kπ≤x≤2kπ+

          B.2kπ<x<2kπ+

          C.2kπ<x<(2k+1)π

          D.2kπ-<x<2kπ+ (以上kZ)

           

          查看答案和解析>>

          y=x -ln(1+x)的單調(diào)遞增區(qū)間是 (     )

          A、 ( -1 ,0 )     B、 ( -1 ,+)      C、 (0 ,+ )      D、 (1 ,+ )

           

          查看答案和解析>>

          y=x-的極大值為  (   )

          A .1                    B.  -1               C.  0              D.不存在

           

          查看答案和解析>>

          y = x -ln(1+x) 的單調(diào)增區(qū)間是 (   )

          A .(-1 ,0 )            B. ( -1 ,+)         C. (0 ,+ )         D. (1 ,+ )

           

          查看答案和解析>>

          y=2arcsin(2x-1)+的定義域是(   )

          (A)[,1] (B)(0,)∪(,1]    (C)(,1]  (D)[0,1]

           

          查看答案和解析>>

          一.選擇題:

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          答案

          C

          A

          C

          B

          B

          A

          B

          D

          二.填空題:

          9.6、30、10;                 10.?5;               11.;

          12.?250;                     13.;              14.③④

          三.解答題:

          15.解: ;  ………5分

          方程有非正實(shí)數(shù)根

           

          綜上: ……………………12分16.解:(I)設(shè)袋中原有個(gè)白球,由題意知

          可得(舍去)

          答:袋中原有3個(gè)白球. 。。。。。。。。4分

          (II)由題意,的可能取值為1,2,3,4,5

           

          所以的分布列為:

          1

          2

          3

          4

          5

          。。。。。。。。。9分

          (III)因?yàn)榧紫热?所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則

          答:甲取到白球的概率為.。。。。。。。。13分

          17.解:(1)由.,∴=1;。。。。。。。。。4分

          (2)任取∈(1,+∞),且設(shè),則:

          >0,

          在(1,+∞)上是單調(diào)遞減函數(shù);。。。。。。。。。8分

          (3)當(dāng)直線∈R)與的圖象無公共點(diǎn)時(shí),=1,

          <2+=4=,|-2|+>2,

          得:.。。。。。。。。13分

          18.(Ⅰ)證明:∵底面,底面, ∴

             又∵平面,平面,

              ∴平面3分

          (Ⅱ)解:∵點(diǎn)分別是的中點(diǎn),

          ,由(Ⅰ)知平面,

          平面

          ,,

          為二面角的平面角,

          底面,∴與底面所成的角即為,

          ,∵為直角三角形斜邊的中點(diǎn),

          為等腰三角形,且,∴;

          (Ⅲ)過點(diǎn)于點(diǎn),∵底面,

             ∴底面,為直線在底面上的射影,

             要,由三垂線定理的逆定理有要

           設(shè),則由,

           又∴在直角三角形中,,

          ∵ ,

          在直角三角形中,

           ,即時(shí),

          (Ⅲ)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,設(shè),則,,設(shè),則

          ,,,

          ,時(shí)時(shí),.

           

           

          19  證明:(1)對(duì)任意x1, x2∈R, 當(dāng) a0,

          =                         =……(3分)

          ∴當(dāng)時(shí),,即

            當(dāng)時(shí),函數(shù)f(x)是凸函數(shù).   ……(4分)

           (2) 當(dāng)x=0時(shí), 對(duì)于a∈R,有f(x)≤1恒成立;當(dāng)x∈(0, 1]時(shí), 要f(x)≤1恒成立

          , ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當(dāng)=1時(shí), 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.

          由此可知,滿足條件的實(shí)數(shù)a的取值恒為負(fù)數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)………10分

          (3)令,∵,∴,……………..(11)分

          ,則,故;

          ,則

          ;,……………..(12)分

          ,則;∴時(shí),.

          綜上所述,對(duì)任意的,都有;……………..(13)分

          所以,不是R上的凸函數(shù). ……………..(14)分

          對(duì)任意,有,

          所以,不是上的凸函數(shù). ……………..(14)分

          20. 解:(1)設(shè)數(shù)列的前項(xiàng)和為,則

          ……….4分

          (2)為偶數(shù)時(shí),

          為奇數(shù)時(shí),

          ………9分

          (3)方法1、因?yàn)?sub>所以

          當(dāng),時(shí),,時(shí)

          又由,兩式相減得

           所以若,則有………..14分

          方法2、由,兩式相減得

          ………..11分

          所以要證明,只要證明

          或①由:

          所以…………………14分

          或②由:

          …………………14分

          數(shù)學(xué)歸納法:①當(dāng)

          當(dāng)

          ②當(dāng)

          當(dāng)

          綜上①②知若,則有.

          所以,若,則有.。。。。。。。。。14分

           

           


          同步練習(xí)冊(cè)答案