日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即.解得.說明:二元不等式求最值這是考試大綱的要求.不等式恒成立變形轉(zhuǎn)化為函數(shù)值之間的關(guān)系.變形換元化歸基本的初等函數(shù)的復(fù)合函數(shù).構(gòu)造函數(shù)的單調(diào)性解決.這是函數(shù)的一個重要應(yīng)用.考查了正比例和反比例函數(shù)的性質(zhì).最后一問的恒成立問題換元后.分離參數(shù)化歸對號函數(shù)單調(diào)性解決值域.再構(gòu)建不等式解參數(shù)范圍.這是高考命題的熱點. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)橢圓 )的一個頂點為,,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線  與橢圓 交于 , 兩點.

          (1)求橢圓的方程;

          (2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

          【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。

          解:(1)橢圓的頂點為,即

          ,解得, 橢圓的標準方程為 --------4分

          (2)由題可知,直線與橢圓必相交.

          ①當直線斜率不存在時,經(jīng)檢驗不合題意.                    --------5分

          ②當直線斜率存在時,設(shè)存在直線,且,.

          ,       ----------7分

          ,,               

             = 

          所以,                               ----------10分

          故直線的方程為 

           

          查看答案和解析>>

          如圖,長方體中,底面是正方形,的中點,是棱上任意一點。

          (Ⅰ)證明: ;

          (Ⅱ)如果=2 ,=,, 求 的長。

           【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得,而,所以,因,所以,又,所以 ;

          (Ⅱ)因=2 ,=,,可得,,設(shè),由,即,解得,即 的長為。

           

          查看答案和解析>>

          4. m>2或m<-2 解析:因為f(x)=在(-1,1)內(nèi)有零點,所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2

          隨機變量的所有等可能取值為1,2…,n,若,則(    )

          A. n=3        B.n=4          C. n=5        D.不能確定

          5.m=-3,n=2 解析:因為的兩零點分別是1與2,所以,即,解得

          6.解析:因為只有一個零點,所以方程只有一個根,因此,所以

          查看答案和解析>>

          如圖,已知直線)與拋物線和圓都相切,的焦點.

          (Ⅰ)求的值;

          (Ⅱ)設(shè)上的一動點,以為切點作拋物線的切線,直線軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;

          (Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,    直線軸交點為,連接交拋物線、兩點,求△的面積的取值范圍.

          【解析】第一問中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

          ,解得舍去)

          設(shè)與拋物線的相切點為,又,得,.     

          代入直線方程得:,∴    所以

          第二問中,由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

          設(shè),由(Ⅰ)知以為切點的切線的方程為.   

          ,得切線軸的點坐標為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

          因為是定點,所以點在定直線

          第三問中,設(shè)直線,代入結(jié)合韋達定理得到。

          解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

          ,解得舍去).     …………………(2分)

          設(shè)與拋物線的相切點為,又,得,.     

          代入直線方程得:,∴    所以,.      ……(2分)

          (Ⅱ)由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

          設(shè),由(Ⅰ)知以為切點的切線的方程為.   

          ,得切線軸的點坐標為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

          因為是定點,所以點在定直線上.…(2分)

          (Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

          的面積范圍是

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項公式;

          (2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即,

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于,

          時,;當時,;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學(xué)歸納法.

          時,,成立.

          假設(shè)當時,不等式成立,

          時,, …………10分

          只要證  ,只要證 

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>


          同步練習(xí)冊答案