日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 化簡,得Φ()>0.99, 查看更多

           

          題目列表(包括答案和解析)

          化簡

          A. 0            B.            C.1         D.

          查看答案和解析>>

          (2010•臺州一模)我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標系中,利用求動點軌跡方程的方法,可以求出過點A(-3,4),且法向量為
          n
          =(1,-2)
          的直線(點法式)方程為1×(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0. 類比以上方法,在空間直角坐標系中,經(jīng)過點A(3,4,5),且法向量為
          n
          =(2,1,3)
          的平面(點法式)方程為
          2x+y+3z-21=0
          2x+y+3z-21=0
          (請寫出化簡后的結(jié)果).

          查看答案和解析>>

          我們把在平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標系xOy中,利用求動點軌跡方程的方法,可以求出過點A(-3,4),且其法向量為
          n
          =(1,-2)
          的直線方程為1x(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0.類比上述方法,在空間坐標系O-xyz中,經(jīng)過點A(1,2,3),且其法向量為
          n
          =(-1,-2,1)
          的平面方程為
           

          查看答案和解析>>

          請先閱讀:
          在等式cos2x=2cos2x-1(x∈R)的兩邊求導(dǎo),得:(cos2x)′=(2cos2x-1)′,由求導(dǎo)法則,得(-sin2x)•2=4cosx•(-sinx),化簡得等式:sin2x=2cosx•sinx.
          (1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整數(shù)n≥2),證明:n[(1+x)n-1-1]=
          n
          k=2
          k
          C
          k
          n
          xk-1

          (2)對于正整數(shù)n≥3,求證:
          (i)
          n
          k=1
          (-1)kk
          C
          k
          n
          =0
          ;
          (ii)
          n
          k=1
          (-1)kk2
          C
          k
          n
          =0
          ;
          (iii)
          n
          k=1
          1
          k+1
          C
          k
          n
          =
          2n+1-1
          n+1

          查看答案和解析>>

          5
          log5(-a)2
          (a≠0)化簡得結(jié)果是( 。
          A、-aB、a2
          C、|a|D、a

          查看答案和解析>>


          同步練習(xí)冊答案