日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由題意.得對任意R成立. --------------------8分 查看更多

           

          題目列表(包括答案和解析)

          設(shè)數(shù)列的各項(xiàng)均為正數(shù).若對任意的,存在,使得成立,則稱數(shù)列為“Jk型”數(shù)列.

          (1)若數(shù)列是“J2型”數(shù)列,且,,求;

          (2)若數(shù)列既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列是等比數(shù)列.

          【解析】1)中由題意,得,,…成等比數(shù)列,且公比

          所以.

          (2)中證明:由{}是“j4型”數(shù)列,得,…成等比數(shù)列,設(shè)公比為t. 由{}是“j3型”數(shù)列,得

          ,…成等比數(shù)列,設(shè)公比為

          ,…成等比數(shù)列,設(shè)公比為;

          …成等比數(shù)列,設(shè)公比為;

           

          查看答案和解析>>

          在R上定義運(yùn)算若不等式對任意實(shí)數(shù)成則

          (       )                                                    

              A.                               B.             

          C.                              D.

           

          查看答案和解析>>

          如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點(diǎn).

          (1)求圓錐體的體積;

          (2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).

          【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

          第一問中,由題意,,故

          從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

          由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

          中,,PH=1/2SB=2,,

          ,所以異面直線SO與P成角的大arctan

          解:(1)由題意,

          從而體積.

          (2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

          由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.

          OAH中,由OAOB得;

          中,,PH=1/2SB=2,,

          ,所以異面直線SO與P成角的大arctan

           

          查看答案和解析>>

          已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.

          (Ⅰ)求數(shù)列的通項(xiàng)公式;

          (Ⅱ)記,,證明).

          【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

          ,得,.

          由條件,得方程組,解得

          所以,.

          (2)證明:(方法一)

          由(1)得

               ①

             ②

          由②-①得

          (方法二:數(shù)學(xué)歸納法)

          ①  當(dāng)n=1時,,,故等式成立.

          ②  假設(shè)當(dāng)n=k時等式成立,即,則當(dāng)n=k+1時,有:

             

             

          ,因此n=k+1時等式也成立

          由①和②,可知對任意,成立.

           

          查看答案和解析>>

          已知f(θ)=sin2θ+2mcosθ-2m-2,θ∈R.
          (1)對任意m∈R,求f(θ)的最大值g(m);
          (2)若f(θ)<0對任意θ∈R恒成立,求m的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案