日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A. 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
          π3
          )=4
          的距離的最小值是
           

          B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
           

          C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
           

          B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若
          PB
          PA
          =
          1
          2
          PC
          PD
          =
          1
          3
          ,則
          BC
          AD
          的值為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
          x=3+2
          2
          cosθ
          y=-1+2
          2
          sinθ
          (θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
          2
          cosθ-sinθ
          ,則曲線C上到直線l距離為
          2
          的點(diǎn)的個(gè)數(shù)為:
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)
          函數(shù)f(x)=x2-x-a2+a+1對(duì)于任一實(shí)數(shù)x,均有f(x)≥0.則實(shí)數(shù)a滿足的條件是
           

          B.(幾何證明選做題)
          如圖,圓O是△ABC的外接圓,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
          3
          ,AB=BC=4,則AC的長(zhǎng)為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)
          在極坐標(biāo)系中,曲線ρ=4cos(θ-
          π
          3
          )
          上任意兩點(diǎn)間的距離的最大值為
           

          查看答案和解析>>

          精英家教網(wǎng)A.不等式
          x-2
          x2+3x+2
          >0
          的解集是
           

          B.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn),過(guò)P作⊙O的切線,切點(diǎn)為CPC=2
          3
          ,若∠CAP=30°,則⊙O的直徑AB=
           

          C.(極坐標(biāo)系與參數(shù)方程選做題)若圓C:
          x=1+
          2
          cosθ
          y=2+
          2
          sinθ
          (θ為參數(shù))
          與直線x-y+m=0相切,則m=
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
           


          B.(幾何證明選做題)如圖,直線PC與圓O相切于點(diǎn)C,割線PAB經(jīng)過(guò)圓心O,
          弦CD⊥AB于點(diǎn)E,PC=4,PB=8,則CE=
           

          C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
          π
          4
          )=2
          2
          的距離為
           

          查看答案和解析>>

          一、選擇題:

             1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

            1. 2,4,6

              13.    14.7   15.2    16.

              17.17.解:(1)  --------------------2分

               --------------------4分

              --------------------6分

              .--------------------8分

              當(dāng)時(shí)(9分),取最大值.--------------------10分

              (2)當(dāng)時(shí),,即,--------------------11分

              解得,.-------------------- 12分

              18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

              ∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

              解法二  “有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn)∵每次摸出一球得白球的概率為

              ∴“有放回摸兩次,顏色不同”的概率為

              (2)設(shè)摸得白球的個(gè)數(shù)為,依題意得

              19.方法一

               

                 (2)

              20.解:(1)

                ∵ x≥1. ∴ ,-----------------------------------------------------2分

                 (當(dāng)x=1時(shí),取最小值).

                ∴ a<3(a=3時(shí)也符合題意). ∴ a≤3.------------------------------------4分

                (2),即27-6a+3=0, ∴ a=5,.------------6分

              ,或 (舍去) --------------------------8分

              當(dāng)時(shí),; 當(dāng)時(shí),

                即當(dāng)時(shí),有極小值.又    ---------10分

                 ∴ fx)在,上的最小值是,最大值是. ----------12分

              21.解:(Ⅰ)∵,∴,

              ∵數(shù)列{}的各項(xiàng)均為正數(shù),∴

              ,

              ),所以數(shù)列{}是以2為公比的等比數(shù)列.………………3分

              的等差中項(xiàng),

              ,∴,

              ∴數(shù)列{}的通項(xiàng)公式.……………………………………………………6分

                 (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

                    1

                 ②

              ②-1得,

              =……………………………10分

              要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

              ∴使S>50成立的正整數(shù)n的最小值為5. ……………………………12分

              22.解:(Ⅰ)由已知得

               

                            …………4分

                (Ⅱ)設(shè)P點(diǎn)坐標(biāo)為(x,y)(x>0),由

                      

                                     …………5分    

                       ∴   消去m,n可得

                           ,又因     8分 

                      ∴ P點(diǎn)的軌跡方程為  

                      它表示以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,且實(shí)軸長(zhǎng)為2,焦距為4的雙曲線

              的右支             …………9分

              (Ⅲ)設(shè)直線l的方程為,將其代入C的方程得

                      

                      即                          

               易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

                      又     

                     設(shè),則

                     ∵  l與C的兩個(gè)交點(diǎn)軸的右側(cè)

                        

                     ∴ ,即     

              又由  同理可得       …………11分

                      由

                     

                   ∴

                 由

                         

                由

                         

              消去

              解之得: ,滿足                …………13分

              故所求直線l存在,其方程為:  …………14分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>