日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)若x=3是的極值點(diǎn).求在[1.a]上的最小值和最大值. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù),).
          (1)若x=3是的極值點(diǎn),求[1,a]上的最小值和最大值;
          (2)若時(shí)是增函數(shù),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          已知函數(shù),).
          (1)若x=3是的極值點(diǎn),求[1,a]上的最小值和最大值;
          (2)若時(shí)是增函數(shù),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          已知函數(shù),).
          (1)若x=3是的極值點(diǎn),求[1,a]上的最小值和最大值;
          (2)若時(shí)是增函數(shù),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          已知x=3是函數(shù)f(x)=(x2+ax-2a-3)e3-x的極值點(diǎn).

          (1)求f(x)的單調(diào)區(qū)間(用a表示);

          (2)設(shè)a>0,g(x)=(a2+8)ex,若存在ξ1ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<3成立,求a的取值范圍.

          查看答案和解析>>

          已知f(x)=ax-lnx,a∈R

          (Ⅰ)當(dāng)a=2時(shí),求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;

          (Ⅱ)若f(x)在x=1處有極值,求f(x)的單調(diào)遞增區(qū)間;

          (Ⅲ)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          一、選擇題:

             1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

            1. 2,4,6

              13.    14.7   15.2    16.

              17.17.解:(1)  --------------------2分

               --------------------4分

              --------------------6分

              .--------------------8分

              當(dāng)時(shí)(9分),取最大值.--------------------10分

              (2)當(dāng)時(shí),,即,--------------------11分

              解得.-------------------- 12分

              18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

              ∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

              解法二  “有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn)∵每次摸出一球得白球的概率為

              ∴“有放回摸兩次,顏色不同”的概率為

              (2)設(shè)摸得白球的個(gè)數(shù)為,依題意得

              19.方法一

               

                 (2)

              20.解:(1)

                ∵ x≥1. ∴ ,-----------------------------------------------------2分

                 (當(dāng)x=1時(shí),取最小值).

                ∴ a<3(a=3時(shí)也符合題意). ∴ a≤3.------------------------------------4分

               。2),即27-6a+3=0, ∴ a=5,.------------6分

              ,或 (舍去) --------------------------8分

              當(dāng)時(shí),; 當(dāng)時(shí),

                即當(dāng)時(shí),有極小值.又    ---------10分

                 ∴ fx)在,上的最小值是,最大值是. ----------12分

              21.解:(Ⅰ)∵,∴,

              ∵數(shù)列{}的各項(xiàng)均為正數(shù),∴,

              ,

              ),所以數(shù)列{}是以2為公比的等比數(shù)列.………………3分

              的等差中項(xiàng),

              ,

              ,∴,

              ∴數(shù)列{}的通項(xiàng)公式.……………………………………………………6分

                 (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

              ,

                    1

                 ②

              ②-1得,

              =……………………………10分

              要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

              ∴使S>50成立的正整數(shù)n的最小值為5. ……………………………12分

              22.解:(Ⅰ)由已知得

               

                            …………4分

                (Ⅱ)設(shè)P點(diǎn)坐標(biāo)為(x,y)(x>0),由

                      

                                     …………5分    

                       ∴   消去m,n可得

                           ,又因     8分 

                      ∴ P點(diǎn)的軌跡方程為  

                      它表示以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,且實(shí)軸長(zhǎng)為2,焦距為4的雙曲線

              的右支             …………9分

              (Ⅲ)設(shè)直線l的方程為,將其代入C的方程得

                      

                      即                          

               易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

                      又     

                     設(shè),則

                     ∵  l與C的兩個(gè)交點(diǎn)軸的右側(cè)

                        

                     ∴ ,即     

              又由  同理可得       …………11分

                      由

                     

                   ∴

                 由

                         

                由

                         

              消去

              解之得: ,滿足                …………13分

              故所求直線l存在,其方程為:  …………14分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>