日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A. 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
          π3
          )=4
          的距離的最小值是
           

          B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
           

          C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
           

          B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若
          PB
          PA
          =
          1
          2
          PC
          PD
          =
          1
          3
          ,則
          BC
          AD
          的值為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
          x=3+2
          2
          cosθ
          y=-1+2
          2
          sinθ
          (θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
          2
          cosθ-sinθ
          ,則曲線C上到直線l距離為
          2
          的點(diǎn)的個(gè)數(shù)為:
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)
          函數(shù)f(x)=x2-x-a2+a+1對(duì)于任一實(shí)數(shù)x,均有f(x)≥0.則實(shí)數(shù)a滿足的條件是
           

          B.(幾何證明選做題)
          如圖,圓O是△ABC的外接圓,過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
          3
          ,AB=BC=4,則AC的長(zhǎng)為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)
          在極坐標(biāo)系中,曲線ρ=4cos(θ-
          π
          3
          )
          上任意兩點(diǎn)間的距離的最大值為
           

          查看答案和解析>>

          精英家教網(wǎng)A.不等式
          x-2
          x2+3x+2
          >0
          的解集是
           

          B.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn),過P作⊙O的切線,切點(diǎn)為CPC=2
          3
          ,若∠CAP=30°,則⊙O的直徑AB=
           

          C.(極坐標(biāo)系與參數(shù)方程選做題)若圓C:
          x=1+
          2
          cosθ
          y=2+
          2
          sinθ
          (θ為參數(shù))
          與直線x-y+m=0相切,則m=
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
           


          B.(幾何證明選做題)如圖,直線PC與圓O相切于點(diǎn)C,割線PAB經(jīng)過圓心O,
          弦CD⊥AB于點(diǎn)E,PC=4,PB=8,則CE=
           

          C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
          π
          4
          )=2
          2
          的距離為
           

          查看答案和解析>>

          一、ADBCC  CCBBA  DC

          二、13. ,;14. ;15. .16.

          三、

          17.

          解: (Ⅰ)由, 是三角形內(nèi)角,得……………..

          ………………………………………..

            …………………………………………………………6分

          (Ⅱ) 在中,由正弦定理, ,

          , ,

          由余弦定理得:

                          =………………………………12分

          18.

          解:(I)已知

                 只須后四位數(shù)字中出現(xiàn)2個(gè)0和2個(gè)1.

                                                       …………4分

             (II)的取值可以是1,2,3,4,5,.

                

                                                                        …………8分

                 的分布列是

             

          1

          2

          3

          4

          5

          P

                                                                                                                …………10分

                           …………12分

             (另解:記

                 .)

          19.

          證明: 解法一:(1)取PC中點(diǎn)M,連結(jié)ME、MF,則MF∥CD,MF=CD,又AE∥CD,AE=CD,∴AE∥MF,且AE=MF,∴四邊形AFME是平行四邊形,∴AF∥EM,∵AF平面PCE,∴AF∥平面PCE. …………………………………(4分)

                   (2)∵PA⊥平面ABCD,CD⊥AD. ∴CD⊥PD,∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°,   ………………………………………………………………(6分)

          ∴△PAD是等腰直角三角形,∴AF⊥PD,又AF⊥CD,∴AF⊥平面PCD,而EM∥AF,∴EM⊥平面PCD. 又EM平面PEC,∴面PEC⊥面PCD. 在平面PCD內(nèi)過F作FH⊥PC于H,則FH就是點(diǎn)F到平面PCE的距離. …………………………………(10分)

          由已知,PD=,PF=,PC=,△PFH∽△PCD,∴,

          ∴FH=.           ………………………………………………………………(12分)

                 解法二:(1)取PC中點(diǎn)M,連結(jié)EM,

          =+=,∴AF∥EM,又EM平面PEC,AF平面PEC,∴AF∥平面PEC. ………………………………………(4分)

          (2)以A為坐標(biāo)原點(diǎn),分別以所在直線為x、y、z

          軸建立坐標(biāo)系. ∵PA⊥平面ABCD,CD⊥AD,∴CD⊥PD,

          ∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°. ……(6分)

          ∴A(0, 0, 0), P(0, 0, 2), D(0, 2, 0), F(0, 1, 1), E, C(3, 2, 0),

          設(shè)平面PCE的法向量為=(x, y, z),則,,而=(-,0,2),

          =(,2,0),∴-x+2z=0,且x+2y=0,解得y=-x,z=x. 取x=4

          =(4, -3, 3),………………………………………………………………(10分)

          =(0,1,-1),

          故點(diǎn)F到平面PCE的距離為d=.…………(12分)

           

          20.

           解:1)函數(shù).又,故為第一象限角,且.

             函數(shù)圖像的一條對(duì)稱軸方程式是: c為半點(diǎn)焦距,

             由知橢圓C的方程可化為

                                       (1)

             又焦點(diǎn)F的坐標(biāo)為(),AB所在的直線方程為

                                         (2)                     (2分)

            (2)代入(1)展開整理得

                                (3)

             設(shè)A(),B(),弦AB的中點(diǎn)N(),則是方程(3)的兩個(gè)不等的實(shí)數(shù)根,由韋達(dá)定理得

                                 (4)

                

                  

                   即為所求。                    (5分)

          2)是平面內(nèi)的兩個(gè)不共線的向量,由平面向量基本定理,對(duì)于這一平面內(nèi)的向量,有且只有一對(duì)實(shí)數(shù)使得等式成立。設(shè)由1)中各點(diǎn)的坐標(biāo)可得:

          又點(diǎn)在橢圓上,代入(1)式得

               

          化為:        (5)

             由(2)和(4)式得

             兩點(diǎn)在橢圓上,故1有入(5)式化簡(jiǎn)得:

                         

          得到是唯一確定的實(shí)數(shù),且,故存在角,使成立,則有

          ,則存在角使等式成立;若于是用代換,同樣證得存在角使等式:成立.

          綜合上述,對(duì)于任意一點(diǎn),總存在角使等式:成立.

                                                                               (12分)

          21.解:(Ⅰ)  

          所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

           (Ⅱ) 證明:據(jù)題意x1<x2<x3,

          由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

          …………………8分

          即ㄓ是鈍角三角形……………………………………..9分

          (Ⅲ) 假設(shè)ㄓ為等腰三角形,則只能是

           

           

           

            ①          …………………………………………

          而事實(shí)上,    ②

          由于,故(2)式等號(hào)不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形..13分

           

          22.

          解:⑴∵,又,為遞增數(shù)列即為,

          當(dāng)時(shí),恒成立,當(dāng)時(shí),的最大值為! !郻的取值范圍是:                   (6分)

          ⑵     ①又       ②

          ①-②:

          當(dāng)時(shí),有成立,

          同號(hào),于是由遞推關(guān)系得同號(hào),因此只要就可推導(dǎo)。又

          ,又    ,

          即首項(xiàng)的取值范圍是

                                                                                (13分)


          同步練習(xí)冊(cè)答案