日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ) 求證:ㄓ是鈍角三角形, 查看更多

           

          題目列表(包括答案和解析)

          已知銳角△ABC中的三個內(nèi)角分別為A,B,C.
          (1)設(shè)
          BC
          CA
          =
          CA
          AB
          ,求證△ABC是等腰三角形;
          (2)設(shè)向量
          s
          =(2sinC,-
          3
          )
          ,
          t
          =(cos2C,2cos2
          C
          2
          -1)
          ,且
          s
          t
          ,若sinA=
          12
          13
          ,求sin(
          π
          3
          -B)
          的值.

          查看答案和解析>>

          (2005•南匯區(qū)一模)已知數(shù)列{an}的前n項和Sn=50n-n2(n∈N*
          (1)求證{an}是等差數(shù)列.
          (2)設(shè)bn=|an|,求數(shù)列{bn}的前n項和Tn
          (3)求
          lim
          n→∞
          Sn
          Tn
          )的值.

          查看答案和解析>>

          7、已知空間四點A、B、C、D和兩平面M、N,又知A、B、C、D在M內(nèi)的射影A1B1C1D1是一條直線,在N內(nèi)的射影A2B2C2D2是一個平行四邊形,求證ABCD是一個平行四邊形.

          查看答案和解析>>

          數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N*).
          (1)設(shè)Cn=log5(an+3),求證{Cn}是等比數(shù)列;
          (2)求數(shù)列{an}的通項公式;
          (3)設(shè)bn=
          1
          an-6
          -
          1
          a
          2
          n
          +6an
          ,數(shù)列{bn}的前n項和為Tn,求證:Tn<-
          1
          4

          查看答案和解析>>

          已知數(shù)列{an}滿足:a1=1,an+1=
          1
          2
          an+n,n為奇數(shù)
          an-2n,n為偶數(shù)

          (1)求a2、a3、a4、a5;
          (2)設(shè)bn=a2n-2,n∈N,求證{bn}是等比數(shù)列,并求其通項公式;
          (3)在(2)條件下,求證數(shù)列{an}前100項中的所有偶數(shù)項的和S100<100.

          查看答案和解析>>

          一、ADBCC  CCBBA  DC

          二、13. ,;14. ;15. .16.

          三、

          17.

          解: (Ⅰ)由, 是三角形內(nèi)角,得……………..

          ………………………………………..

            …………………………………………………………6分

          (Ⅱ) 在中,由正弦定理, ,

          , ,

          由余弦定理得:

                          =………………………………12分

          18.

          解:(I)已知

                 只須后四位數(shù)字中出現(xiàn)2個0和2個1.

                                                       …………4分

             (II)的取值可以是1,2,3,4,5,.

                

                                                                        …………8分

                 的分布列是

             

          1

          2

          3

          4

          5

          P

                                                                                                                …………10分

                           …………12分

             (另解:記

                 .)

          19.

          證明: 解法一:(1)取PC中點M,連結(jié)ME、MF,則MF∥CD,MF=CD,又AE∥CD,AE=CD,∴AE∥MF,且AE=MF,∴四邊形AFME是平行四邊形,∴AF∥EM,∵AF平面PCE,∴AF∥平面PCE. …………………………………(4分)

                   (2)∵PA⊥平面ABCD,CD⊥AD. ∴CD⊥PD,∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°,   ………………………………………………………………(6分)

          ∴△PAD是等腰直角三角形,∴AF⊥PD,又AF⊥CD,∴AF⊥平面PCD,而EM∥AF,∴EM⊥平面PCD. 又EM平面PEC,∴面PEC⊥面PCD. 在平面PCD內(nèi)過F作FH⊥PC于H,則FH就是點F到平面PCE的距離. …………………………………(10分)

          由已知,PD=,PF=,PC=,△PFH∽△PCD,∴,

          ∴FH=.           ………………………………………………………………(12分)

                 解法二:(1)取PC中點M,連結(jié)EM,

          =+=,∴AF∥EM,又EM平面PEC,AF平面PEC,∴AF∥平面PEC. ………………………………………(4分)

          (2)以A為坐標原點,分別以所在直線為x、y、z

          軸建立坐標系. ∵PA⊥平面ABCD,CD⊥AD,∴CD⊥PD,

          ∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°. ……(6分)

          ∴A(0, 0, 0), P(0, 0, 2), D(0, 2, 0), F(0, 1, 1), E, C(3, 2, 0),

          設(shè)平面PCE的法向量為=(x, y, z),則,而=(-,0,2),

          =(,2,0),∴-x+2z=0,且x+2y=0,解得y=-x,z=x. 取x=4

          =(4, -3, 3),………………………………………………………………(10分)

          =(0,1,-1),

          故點F到平面PCE的距離為d=.…………(12分)

           

          20.

           解:1)函數(shù).又,故為第一象限角,且.

             函數(shù)圖像的一條對稱軸方程式是: c為半點焦距,

             由知橢圓C的方程可化為

                                       (1)

             又焦點F的坐標為(),AB所在的直線方程為

                                         (2)                     (2分)

            (2)代入(1)展開整理得

                                (3)

             設(shè)A(),B(),弦AB的中點N(),則是方程(3)的兩個不等的實數(shù)根,由韋達定理得

                                 (4)

                

                  

                   即為所求。                    (5分)

          2)是平面內(nèi)的兩個不共線的向量,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實數(shù)使得等式成立。設(shè)由1)中各點的坐標可得:

          又點在橢圓上,代入(1)式得

               

          化為:        (5)

             由(2)和(4)式得

             兩點在橢圓上,故1有入(5)式化簡得:

                         

          得到是唯一確定的實數(shù),且,故存在角,使成立,則有

          ,則存在角使等式成立;若于是用代換,同樣證得存在角使等式:成立.

          綜合上述,對于任意一點,總存在角使等式:成立.

                                                                               (12分)

          21.解:(Ⅰ)  

          所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

           (Ⅱ) 證明:據(jù)題意x1<x2<x3,

          由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

          …………………8分

          即ㄓ是鈍角三角形……………………………………..9分

          (Ⅲ) 假設(shè)ㄓ為等腰三角形,則只能是

           

           

           

            ①          …………………………………………

          而事實上,    ②

          由于,故(2)式等號不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形..13分

           

          22.

          解:⑴∵,又,為遞增數(shù)列即為,

          當(dāng)時,恒成立,當(dāng)時,的最大值為! !郻的取值范圍是:                   (6分)

          ⑵     ①又       ②

          ①-②:

          ,

          當(dāng)時,有成立,

          同號,于是由遞推關(guān)系得同號,因此只要就可推導(dǎo)。又

          ,又   

          即首項的取值范圍是

                                                                                (13分)


          同步練習(xí)冊答案