日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)求點(diǎn)到平面的距離, 查看更多

           

          題目列表(包括答案和解析)

          在平面直角坐標(biāo)系xOy中,已知對(duì)于任意實(shí)數(shù)k,直線(
          3
          k+1)x+(k-
          3
          )y-(3k+
          3
          )=0
          恒過(guò)定點(diǎn)F.設(shè)橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F,且橢圓C上的點(diǎn)到F的最大距離為2+
          3

          (1)求橢圓C的方程;
          (2)設(shè)(m,n)是橢圓C上的任意一點(diǎn),圓O:x2+y2=r2(r>0)與橢圓C有4個(gè)相異公共點(diǎn),試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關(guān)系.

          查看答案和解析>>

          在平面直角坐標(biāo)系xOy中,橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上一點(diǎn)到橢圓E的兩個(gè)焦點(diǎn)距離之和為2
          3
          ,橢圓E的離心率為
          6
          3

          (1)求橢圓E的方程;
          (2)若b為橢圓E的半短軸長(zhǎng),記C(0,b),直線l經(jīng)過(guò)點(diǎn)C且斜率為2,與直線l平行的直線AB過(guò)點(diǎn)(1,0)且交橢圓于A、B兩點(diǎn),求△ABC的面積S的值.

          查看答案和解析>>

          在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
          x=2cos
          y=2sin?-2
          (?為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,C2的極坐標(biāo)方程為ρcos(θ-
          π
          4
          )=
          2
          ,(余弦展開為+號(hào),改題還是答案?)
          (1)求曲線C1的極坐標(biāo)方程及C2的直角坐標(biāo)方程;
          (2)點(diǎn)P為C1上任意一點(diǎn),求P到C2距離的取值范圍.

          查看答案和解析>>

          在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn),

          若點(diǎn)C滿足,點(diǎn)C的軌跡與拋物線交于A、B兩點(diǎn).

          (I)求證:;

          (II)在軸正半軸上是否存在一定點(diǎn),使得過(guò)點(diǎn)P的任意一條拋物線的弦的長(zhǎng)度是原點(diǎn)到該弦中點(diǎn)距離的2倍,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn),若點(diǎn)C滿足,點(diǎn)C的軌跡與拋物線交于A、B兩點(diǎn).

          (I)求證:;

          (II)在軸正半軸上是否存在一定點(diǎn),使得過(guò)點(diǎn)P的任意一條拋物線的弦的長(zhǎng)度是原點(diǎn)到該弦中點(diǎn)距離的2倍,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          1、D    2、C   3、C    4、C    5、B    6、C

          7、4    8、   9、   10、   

          11、解:(Ⅰ)∵   底面ABCD是正方形,

          ∴AB⊥BC,

          又平面PBC⊥底面ABCD  

          平面PBC ∩  平面ABCD=BC

          ∴AB  ⊥平面PBC

          又PC平面PBC

          ∴AB  ⊥CP  ………………3分

          (Ⅱ)解法一:體積法.由題意,面,

           

          中點(diǎn),則

          .

          再取中點(diǎn),則   ………………5分

          設(shè)點(diǎn)到平面的距離為,則由

          .                   ………………7分

          解法二:

          中點(diǎn),再取中點(diǎn)

          ,

          過(guò)點(diǎn),則

          中,

          ∴點(diǎn)到平面的距離為。  ………………7分

          (Ⅲ)

          就是二面角的平面角.

          ∴二面角的大小為45°.   ………………12分

           

          12、解:(I)證明:在直棱柱ABC-A1B1C1中,有A1C1⊥CC1。

               ∵ ∠ACB=90º,∴A1C1⊥C1B1,即A1C1⊥平面C1CBB1,

             ∵CG平面C1CBB1,∴A1C1⊥CG。┉┉┉┉┉┉┉┉2分

             在矩形C1CBB1中,CC1=BB1=2BC,G為BB1的中點(diǎn),

             CG=BC,C1GBC,CC1=2BC

             ∴∠CGC1=90,即CG⊥C1G┉┉┉┉┉┉┉┉4分

          而A1C1∩C1G=C1,

          ∴CG⊥平面A1GC1。

          ∴平面A1CG⊥平面A1GC1。┉┉┉┉┉┉┉┉6分

          (II)由于CC1平面ABC,

           ∠ACB=90º,建立如圖所示的空間坐標(biāo)系,設(shè)AC=BC=CC1=a,則A(a,0,0),B(0,a,0)

          A1(a,0,2a),G(0,a,a).

          =(a,0,2a),=(0,a,a). ┉┉┉┉┉┉┉┉8分

          設(shè)平面A1CG的法向量n1=(x1,y1,z1),

          令z1=1,n1=(-2,-1,1). ┉┉┉┉┉┉┉┉9分

          又平面ABC的法向量為n2=(0,0,1) ┉┉┉┉┉┉┉┉10分

          設(shè)平面ABC與平面A1CG所成銳二面角的平面角為θ,

          ┉┉┉┉┉┉┉┉11分

          即平面ABC與平面A1CG所成銳二面角的平面角的余弦值為。┉┉┉12分

           

           

           

           


          同步練習(xí)冊(cè)答案