日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(Ⅰ)在正三棱柱中. 查看更多

           

          題目列表(包括答案和解析)

          三棱柱中,側(cè)棱與底面垂直,,,分別是,的中點(diǎn).

          (Ⅰ)求證:平面

          (Ⅱ)求證:平面;

          (Ⅲ)求三棱錐的體積.

          【解析】第一問(wèn)利連結(jié),,∵M(jìn),N是AB,的中點(diǎn)∴MN//

          又∵平面,∴MN//平面      ----------4分

          ⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形是正方形.∴.∴.連結(jié)

          ,又N中的中點(diǎn),∴

          相交于點(diǎn)C,∴MN平面.      --------------9分

          ⑶中由⑵知MN是三棱錐M-的高.在直角中,

          ∴MN=.又.得到結(jié)論。

          ⑴連結(jié),∵M(jìn),N是AB,的中點(diǎn)∴MN//

          又∵平面,∴MN//平面   --------4分

          ⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,

          ∴四邊形是正方形.∴

          .連結(jié),

          ,又N中的中點(diǎn),∴

          相交于點(diǎn)C,∴MN平面.      --------------9分

          ⑶由⑵知MN是三棱錐M-的高.在直角中,

          ∴MN=.又

           

          查看答案和解析>>

          如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1
          精英家教網(wǎng)
          (1)求證:BE=EB1;
          (2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
          注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
          精英家教網(wǎng)
          (1)證明:在截面A1EC內(nèi),過(guò)E作EG⊥A1C,G是垂足.
          ①∵
           

          ∴EG⊥側(cè)面AC1;取AC的中點(diǎn)F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
          ②∵
           

          ∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個(gè)平面,交側(cè)面AC1于FG.
          ③∵
           

          ∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
          ④∵
           

          ∴FG∥AA1,△AA1C∽△FGC,
          ⑤∵
           

          FG=
          1
          2
          AA1=
          1
          2
          BB1
          ,即BE=
          1
          2
          BB1,故BE=EB1

          查看答案和解析>>

          如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點(diǎn),且.

          (Ⅰ)求證:CN∥平面AMB1;

          (Ⅱ)求證: B1M⊥平面AMG.

          【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運(yùn)用。第一問(wèn)中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明

          第二問(wèn)中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。

          解:(Ⅰ)設(shè)AB1 的中點(diǎn)為P,連結(jié)NP、MP ………………1分

          ∵CM   ,NP   ,∴CM       NP, …………2分

          ∴CNPM是平行四邊形,∴CN∥MP  …………………………3分

          ∵CN  平面AMB1,MP奐  平面AMB1,∴CN∥平面AMB1…4分

          (Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

              ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

          ∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

          設(shè):AC=2a,則

          …………………………8分

          同理,…………………………………9分

          ∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

          ………………………………10分

           

          查看答案和解析>>

          如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1

          (1)求證:BE=EB1
          (2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
          注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).

          (1)證明:在截面A1EC內(nèi),過(guò)E作EG⊥A1C,G是垂足.
          ①∵_(dá)_____
          ∴EG⊥側(cè)面AC1;取AC的中點(diǎn)F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
          ②∵_(dá)_____
          ∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個(gè)平面,交側(cè)面AC1于FG.
          ③∵_(dá)_____
          ∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
          ④∵_(dá)_____
          ∴FG∥AA1,△AA1C∽△FGC,
          ⑤∵_(dá)_____
          ,即

          查看答案和解析>>

          如圖,在三棱柱中,側(cè)面,為棱上異于的一點(diǎn),,已知,求:

          (Ⅰ)異面直線的距離;

          (Ⅱ)二面角的平面角的正切值.

          【解析】第一問(wèn)中,利用建立空間直角坐標(biāo)系

          解:(I)以B為原點(diǎn),、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,

          在三棱柱中有

          ,

          設(shè)

          側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.

          (II)由已知有故二面角的平面角的大小為向量的夾角.

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案