日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19.已知函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)已知函數(shù),其中a為常數(shù).

             (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

             (Ⅱ)求的單調(diào)區(qū)間.

          查看答案和解析>>

          (本小題滿分12分)

          已知函數(shù),其中

          在x=1處取得極值,求a的值;

          的單調(diào)區(qū)間;

          (Ⅲ)若的最小值為1,求a的取值范圍。   

          查看答案和解析>>

          . (本小題滿分12分)已知函數(shù),且給定條件

          ⑴求的最大值及最小值;

          ⑵若又給條件,且的充分條件,求實數(shù)的取值范圍。

          查看答案和解析>>

          (本小題滿分12分)

          已知函數(shù),其中。

          (1)當(dāng)滿足什么條件時,取得極值?

          (2)已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍。

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù),點是函數(shù)圖像上任意一點,點關(guān)于原點的對稱點的軌跡是函數(shù)的圖像.   (Ⅰ)當(dāng)時,解關(guān)于的不等式;  (Ⅱ)當(dāng),且時,總有恒成立,求的取值范圍.

          查看答案和解析>>

           

          一:選擇題:BCAAD   CCCBA  CC

           

          二:填空題:

            1. 20090109

              三:解答題

              17.解:(1)由已知

                 ∴ 

                 ∵  

              ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

                  又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

              所以                                                                                    

              (2)在△ABC中,   

                          

                      

                   而   

              如果

                  

                                                                                 

                                                

              18.解:(1)點A不在兩條高線上,

               不妨設(shè)AC邊上的高:,AB邊上的高:

              所以AC,AB的方程為:,

              ,即

              ,

              由此可得直線BC的方程為:

              (2),

              由到角公式得:,

              同理可算,。

              19.解:(1)令

                 則,因,

              故函數(shù)上是增函數(shù),

              時,,即

                 (2)令

                  則

                  所以在(,―1)遞減,(―1,0)遞增,

              (0,1)遞減,(1,)遞增。

              處取得極小值,且

              故存在,使原方程有4個不同實根。

              20.解(1)連結(jié)FO,F是AD的中點,

              *  OFAD,

              EO平面ABCD

              由三垂線定理,得EFAD,

              AD//BC,

              EFBC                          

              連結(jié)FB,可求得FB=PF=,則EFPB,

              PBBC=B,

               EF平面PBC。 

              (2)連結(jié)BD,PD平面ABCD,過點E作EOBD于O,

              連結(jié)AO,則EO//PD

              且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

              E是PB的中點,則O是BD的中點,且EO=PD=1

              在Rt△EOA中,AO=

                 所以:異面直線PD與AE所成的角的大小為

              (3)取PC的中點G,連結(jié)EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

              * PD平面ABCD,

              * PDBC,又DCBC,且PDDC=D,

              BC平面PDC

              * BCPC,

              EG//BC,則EGPC,

              FGPC

              所以FGE是二面角F―PC―B的平面角                                   

              在Rt△FEG中,EG=BC=1,GF=

              ,

              所以二面角F―PC―B的大小為   

              21.解(1), 

              ,

                 ,令,

              所以遞增

              ,可得實數(shù)的取值范圍為

              (2)當(dāng)時,

                 所以:,

              即為 

              可化為

              由題意:存在時,

              恒成立

              ,

              只要

               

              所以:,

              ,知

              22.證明:(1)由已知得

                

              (2)由(1)得

              =

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>