日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求證:EF平面PBC,(2)求異面直線PD與AE所成的角的大小, 查看更多

           

          題目列表(包括答案和解析)

          如圖,P為正方形ABCD所在平面外一點(diǎn)PA⊥平面ABCD,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
          (I)求證:EF∥平面ABCD;
          (II)求證:平面PBC∥平面EFG;
          (III)求異面直線EG與BD所成角的大。

          查看答案和解析>>

          如圖,P為正方形ABCD所在平面外一點(diǎn)PA⊥平面ABCD,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
          (I)求證:EF∥平面ABCD;
          (II)求證:平面PBC∥平面EFG;
          (III)求異面直線EG與BD所成角的大。

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).

          (Ⅰ)求異面直線PD與AE所成角的大;

          (Ⅱ)求證:EF⊥平面PBC;

          (Ⅲ)求二面角F-PC-B的大。

          查看答案和解析>>

          (本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).

          ⑴求異面直線PD與AE所成角的大。
          ⑵求證:EF⊥平面PBC ;
          ⑶求二面角F—PC—B的大。.

          查看答案和解析>>

          (本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).

           ⑴求異面直線PD與AE所成角的大;

           ⑵求證:EF⊥平面PBC ;

           ⑶求二面角F—PC—B的大。.

           

           

          查看答案和解析>>

           

          一:選擇題:BCAAD   CCCBA  CC

           

          二:填空題:

            1. 20090109

              三:解答題

              17.解:(1)由已知

                 ∴ 

                 ∵  

              ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

                  又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

              所以                                                                                    

              (2)在△ABC中,   

                          

                      

                   而   

              如果,

                  

                                                                                 

                                                

              18.解:(1)點(diǎn)A不在兩條高線上,

               不妨設(shè)AC邊上的高:,AB邊上的高:

              所以AC,AB的方程為:,

              ,即

              ,

              由此可得直線BC的方程為:

              (2),

              由到角公式得:,

              同理可算,。

              19.解:(1)令

                 則,因,

              故函數(shù)上是增函數(shù),

              時(shí),,即

                 (2)令

                  則

                  所以在(,―1)遞減,(―1,0)遞增,

              (0,1)遞減,(1,)遞增。

              處取得極小值,且

              故存在,使原方程有4個(gè)不同實(shí)根。

              20.解(1)連結(jié)FO,F是AD的中點(diǎn),

              *  OFAD,

              EO平面ABCD

              由三垂線定理,得EFAD,

              AD//BC,

              EFBC                          

              連結(jié)FB,可求得FB=PF=,則EFPB,

              PBBC=B,

               EF平面PBC。 

              (2)連結(jié)BD,PD平面ABCD,過(guò)點(diǎn)E作EOBD于O,

              連結(jié)AO,則EO//PD

              且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

              E是PB的中點(diǎn),則O是BD的中點(diǎn),且EO=PD=1

              在Rt△EOA中,AO=,

                 所以:異面直線PD與AE所成的角的大小為

              (3)取PC的中點(diǎn)G,連結(jié)EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

              * PD平面ABCD,

              * PDBC,又DCBC,且PDDC=D,

              BC平面PDC

              * BCPC,

              EG//BC,則EGPC,

              FGPC

              所以FGE是二面角F―PC―B的平面角                                   

              在Rt△FEG中,EG=BC=1,GF=

              ,

              所以二面角F―PC―B的大小為   

              21.解(1), 

              ,

                 ,令,

              所以遞增

              ,可得實(shí)數(shù)的取值范圍為

              (2)當(dāng)時(shí),

                 所以:,

              即為 

              可化為

              由題意:存在,時(shí),

              恒成立

              ,

              只要

               

              所以:

              ,知

              22.證明:(1)由已知得

                

              (2)由(1)得

              =

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>