日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

          (1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

          查看答案和解析>>

          (本小題滿分12分)已知等比數(shù)列{an}中, 

             (Ⅰ)求數(shù)列{an}的通項公式an;

             (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

             (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù),其中a為常數(shù).

             (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

             (Ⅱ)求的單調(diào)區(qū)間.

          查看答案和解析>>

          (本小題滿分12分)

          甲、乙兩籃球運(yùn)動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

             (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

             (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

          查看答案和解析>>

          (本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

             (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

             (2)當(dāng)時,求弦長|AB|的取值范圍.

          查看答案和解析>>

          一.選擇題

          題號

          10

          11

          12

          答案

          C

          C

          A

          D

          C

          B

          A

          D

          D

          A

          二.13.      14.      15.     16.(萬元)

          三.17.(I) 由

          代入 得:     

          整理得:                  (5分)

          (II)由 

                  由余弦定理得:

                 -----------------------------   (9分)

            

                 ------   (12分)

          18.(Ⅰ)  的分布列.   

             2

             3

             4

             5

              6

          p

           

           

                                          - --------- ------   (4分)

          (Ⅱ)設(shè)擲出的兩枚骰子的點數(shù)同是為事件

               同擲出1的概率,同擲出2的概率,同擲出3的概率

          所以,擲出的兩枚骰子的點數(shù)相同的概率為P= 。ǎ阜郑

          (Ⅲ)

          時)

           

           。

            3

            4

            5 

           。

           

             3

             6

              6

             6

              6

           p

             

           

           

           

           

          時)

           

            2

            3

            4

            5 

            6

           

             2

             5

              8

             8

              8

           p

             

           

           

           

           

          時)

           

           。

            3

            4

            5 

            6

           

             1

             4

              7

            10

              10

           p

             

           

           

           

           

          時, 最大為                             (12分)

          19.(Ⅰ)

             

              兩兩相互垂直, 連結(jié)并延長交于F.

             

           

              同理可得

            

            

            

                    ------------  (6分)

          (Ⅱ)的重心

              F是SB的中點

            

            

             梯形的高

                  ---     (12分)

                 【注】可以用空間向量的方法

          20.設(shè)2,f (a1),  f (a2),  f (a3), …,f (an),  2n+4的公差為d,則2n+4=2+(n+2-1)d   d=2,

           

          ……………………(4分)

             (2),

           

                 --------------------              (8分)

           

          21.(Ⅰ)∵直線的斜率為1,拋物線的焦點 

              ∴直線的方程為

             由

            設(shè)

            則

            又

                 

            故 夾角的余弦值為    -----------------   (6分)

          (Ⅱ)由

            即得:

            由 

          從而得直線的方程為

           ∴軸上截距為

            ∵的減函數(shù)

          ∴  從而得

          軸上截距的范圍是  ------------ (12分)

          22.(Ⅰ) 

              在直線上,

                          ??????????????     。ǎ捶郑

          (Ⅱ)

           上是增函數(shù),上恒成立

           所以得         ???????????????  (8分)

          (Ⅲ)的定義域是,

          ①當(dāng)時,上單增,且,無解;

          、诋(dāng)時,上是增函數(shù),且,

          有唯一解;

          ③當(dāng)時,

          那么在單減,在單增,

              時,無解;

               時,有唯一解 ;

               時,

               那么在上,有唯一解

          而在上,設(shè)

            

          即得在上,有唯一解.

          綜合①②③得:時,有唯一解;

                  時,無解;

                 時,有且只有二解.

           

                         ??????????????    。ǎ保捶郑

           


          同步練習(xí)冊答案